Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 3, 2012
Page(s) 161 - 176
DOI https://doi.org/10.1051/jbio/2012020
Publié en ligne 22 novembre 2012
  • Abbott N.J., Ronnback L., Hansson E., Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev, 2006, 7, 41–53. [Google Scholar]
  • Aller S.G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., Harrell P.M., Trinh Y.T., Zhang Q., Urbatsch I.L., Chang G., Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323, 1718–1722. [CrossRef] [PubMed] [Google Scholar]
  • Amarenco P., Hypercholesterolemia, lipid-lowering agents, and the risk for brain infarction. Neurology, 2001, 57, S35–S44. [CrossRef] [PubMed] [Google Scholar]
  • Amarenco P., Benavente O., Goldstein L.B., Callahan A., 3rd, Sillesen H., Hennerici M.G., Gilbert S., Rudolph A.E., Simunovic L., Zivin J.A., Welch K.M., Results of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial by stroke subtypes. Stroke, 2009, 40, 1405–1409. [CrossRef] [PubMed] [Google Scholar]
  • An P., Xue Y.X., Effects of preconditioning on tight junction and cell adhesion of cerebral endothelial cells. Brain Res, 2009, 1272, 81–88. [CrossRef] [PubMed] [Google Scholar]
  • Andjelkovic A.V., Stamatovic S.M., Keep R.F., The protective effects of preconditioning on cerebral endothelial cells in vitro. J Cereb Blood Flow Metab, 2003, 23, 1348–1355. [CrossRef] [PubMed] [Google Scholar]
  • Andras I.E., Deli M.A., Veszelka S., Hayashi K., Hennig B., Toborek, M., The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J Cereb Blood Flow Metab, 2007, 27, 1431–1443. [CrossRef] [PubMed] [Google Scholar]
  • Aoki T., Sumii T., Mori T., Wang X., Lo E.H., Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke, 2002, 33, 2711–2717. [CrossRef] [PubMed] [Google Scholar]
  • Ayata C., Ropper A.H., Ischaemic brain oedema. J Clin Neurosci, 2002, 9, 113–124. [CrossRef] [PubMed] [Google Scholar]
  • Ballabh P., Braun A., Nedergaard M., The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis, 2004, 16, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Begley D.J., ABC transporters and the blood-brain barrier. Curr Pharm Des, 2004, 10, 1295–1312. [CrossRef] [PubMed] [Google Scholar]
  • Begley D.J., Brightman M.W., Structural and functional aspects of the blood-brain barrier. Prog Drug Res, 2003, 61, 39–78. [PubMed] [Google Scholar]
  • Benchenane K., Lopez-Atalaya J.P., Fernandez-Monreal M., Touzani O., Vivien D., Equivocal roles of tissue-type plasminogen activator in stroke-induced injury. Trends Neurosci, 2004, 27, 155–160. [CrossRef] [PubMed] [Google Scholar]
  • Benchenane K., Bérézowski V., Ali C., Fernandez-Monreal M., Lopez-Atalaya J.P., Brillault J., Chuquet J., Nouvelot A., MacKenzie E.T., Bu G., Cecchelli R., Touzani O., Vivien D., Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation, 2005a, 111, 2241–2249. [CrossRef] [PubMed] [Google Scholar]
  • Benchenane K., Bérézowski V., Fernandez-Monreal M., Brillault J., Valable S., Dehouck M.P., Cecchelli R., Vivien D., Touzani O., Ali C., Oxygen glucose deprivation switches the transport of tPA across the blood-brain barrier from an LRP-dependent to an increased LRP-independent process. Stroke, 2005b, 36, 1065–1070. [CrossRef] [PubMed] [Google Scholar]
  • Bérézowski V., Landry C., Dehouck M.P., Cecchelli R., Fénart L., Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier. Brain Res, 2004, 1018, 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Bloomfield Rubins H., Davenport J., Babikian V., Brass L.M., Collins D., Wexler L., Wagner S., Papademetriou V., Rutan G., Robins S.J., Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol: The Veterans Affairs HDL Intervention Trial (VA-HIT). Circulation, 2001, 103, 2828–2833. [CrossRef] [PubMed] [Google Scholar]
  • Bordet R., Gelé P., Duriez P., Fruchart J.C., PPARs: a new target for neuroprotection. J Neurol Neurosurg Psychiatry, 2006, 77, 285–287. [CrossRef] [PubMed] [Google Scholar]
  • Borst P., Evers R., Kool M., Wijnholds J., A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst, 2000, 92, 1295–1302. [CrossRef] [PubMed] [Google Scholar]
  • Bradbury M.W., Physiopathology of the blood-brain barrier. Adv Exp Med Biol, 1976, 69, 507–516. [CrossRef] [PubMed] [Google Scholar]
  • Brightman M.W., Reese T.S., Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol, 1969, 40, 648–677. [CrossRef] [PubMed] [Google Scholar]
  • Brillault J., Bérézowski V., Cecchelli R., Dehouck M.P., Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood-brain barrier during ischaemia. J Neurochem, 2002, 83, 807–817. [CrossRef] [PubMed] [Google Scholar]
  • Brillault J., Lam T.I., Rutkowsky J.M., Foroutan S., O’Donnell M.E., Hypoxia effects on cell volume and ion uptake of cerebral microvascular endothelial cells. Am J Physiol, 2008, 294, C88–C96. [CrossRef] [Google Scholar]
  • Cadet J.L., Krasnova I.N., Cellular and molecular neurobiology of brain preconditioning. Mol Neurobiol, 2009, 39, 50–61. [CrossRef] [PubMed] [Google Scholar]
  • Candelario-Jalil E., Yang Y., Rosenberg G.A., Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 2009, 158, 983–994. [CrossRef] [PubMed] [Google Scholar]
  • Cecchelli R., Bérézowski V., Lundquist S., Culot M., Renftel M., Dehouck M.P., Fénart L., Modelling of the blood-brain barrier in drug discovery and development. Nat Rev, 2007, 6, 650–661. [CrossRef] [PubMed] [Google Scholar]
  • Chapman D.F., Lyden P., Lapchak P.A., Nunez S., Thibodeaux H., Zivin J., Comparison of TNK with wild-type tissue plasminogen activator in a rabbit embolic stroke model. Stroke, 2001, 32, 748–752. [CrossRef] [PubMed] [Google Scholar]
  • Chen J., Simon R., Ischemic tolerance in the brain. Neurology, 1997, 48, 306–311. [CrossRef] [PubMed] [Google Scholar]
  • Cole D.J., Matsumura J.S., Drummond J.C., Schultz R.L., Wong M.H., Time- and pressure-dependent changes in blood-brain barrier permeability after temporary middle cerebral artery occlusion in rats. Acta Neuropathol, 1991, 82, 266–273. [CrossRef] [PubMed] [Google Scholar]
  • Collino M., Aragno M., Mastrocola R., Benetti E., Gallicchio M., Dianzani C., Danni O., Thiemermann C., Fantozzi R., Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radic Biol Med, 2006, 41, 579–589. [CrossRef] [PubMed] [Google Scholar]
  • Cordon-Cardo C., O’Brien J.P., Casals D., Rittman-Grauer L., Biedler J.L., Melamed M.R., Bertino J.R., Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA, 1989, 86, 695–698. [CrossRef] [Google Scholar]
  • Crone C., The blood-brain-barrier. Facts and questions. In Siesjo B.K., Sorensen S.C. (Eds.) Ion homeostasis of the brain, 1971, Munksgaard, Copenhagen, pp. 52–62. [Google Scholar]
  • Dallas S., Miller D.S., Bendayan R., Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev, 2006, 58, 140–161. [CrossRef] [PubMed] [Google Scholar]
  • DeBault L.E., Cancilla P.A., Gamma-glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science, 1980, 207, 653–655. [CrossRef] [PubMed] [Google Scholar]
  • Dehouck B., Dehouck M.P., Fruchart J.C., Cecchelli R., Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol, 1994, 126, 465–473. [CrossRef] [PubMed] [Google Scholar]
  • Delerive P., De Bosscher K., Besnard S., Vanden Berghe W., Peters J.M., Gonzalez F.J., Fruchart J.C., Tedgui A., Haegeman G., Staels B., Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem, 1999, 274, 32048–32054. [CrossRef] [PubMed] [Google Scholar]
  • Deplanque D., Gelé P., Pétrault O., Six I., Furman C., Bouly M., Nion S., Dupuis B., Leys D., Fruchart J.C., Cecchelli R., Staels B., Duriez P., Bordet R., Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci, 2003, 23, 6264–6271. [PubMed] [Google Scholar]
  • Deplanque D., Masse I., Lefebvre C., Libersa C., Leys D., Bordet R., Prior TIA, lipid-lowering drug use, and physical activity decrease ischemic stroke severity. Neurology, 2006, 67, 1403–1410. [CrossRef] [PubMed] [Google Scholar]
  • Deplanque D., Bordet R., Physical activity: one of the easiest ways to protect the brain? J Neurol Neurosurag Psychiatry, 2009, 80, 942. [CrossRef] [Google Scholar]
  • Desvergne B., Wahli W., Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 1999, 20, 649–688. [CrossRef] [PubMed] [Google Scholar]
  • Dirnagl U., Becker K., Meisel A., Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol, 2009, 8, 398–412. [CrossRef] [PubMed] [Google Scholar]
  • Donnan G.A., Fisher M., Macleod M., Davis S.M., Stroke. Lancet, 2008, 371, 1612–1623. [CrossRef] [PubMed] [Google Scholar]
  • Ducruet A.F., Grobelny B.T., Zacharia B.E., Hickman Z.L., Yeh M.L., Connolly E.S., Pharmacotherapy of cerebral ischemia. Expert Opin Pharmacother, 2009, 10, 1895–1906. [CrossRef] [PubMed] [Google Scholar]
  • Eisenblatter T., Huwel S., Galla H.J., Characterisation of the brain multidrug resistance protein (BMDP/ ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res, 2003, 971, 221–231. [CrossRef] [PubMed] [Google Scholar]
  • el-Bacha R.S., Minn A., Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol, 1999, 45, 15–23. [PubMed] [Google Scholar]
  • Endres M., Statins and stroke. J Cereb Blood Flow Metab, 2005, 25, 1093–1110. [CrossRef] [PubMed] [Google Scholar]
  • Endres M., Engelhardt B., Koistinaho J., Lindvall O., Meairs S., Mohr J.P., Planas A., Rothwell N., Schwaninger M., Schwab M.E., Vivien D., Wieloch T., Dirnagl U., Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis, 2008, 25, 268–278. [CrossRef] [PubMed] [Google Scholar]
  • Erlich P., Das Sauerstoffbedürfriss des Organismus. Ein farbenanalistische Studie. 1885, A Hirschwald Edit, Berlin. [Google Scholar]
  • Evers R., Zaman G.J., van Deemter L., Jansen H., Calafat J., Oomen L.C., Oude Elferink R.P., Borst P., Schinkel A.H., Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J Clin Invest, 1996, 97, 1211–1218. [CrossRef] [PubMed] [Google Scholar]
  • Fagan S.C., Hess D.C., Hohnadel E.J., Pollock D.M., Ergul A., Targets for vascular protection after acute ischemic stroke. Stroke, 2004, 35, 2220–2225. [CrossRef] [PubMed] [Google Scholar]
  • Fénart L., Buee-Scherrer V., Descamps L., Duhem C., Poullain M.G., Cecchelli R., Dehouck M.P., Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain barrier integrity and drug transport to the brain by an in vitro model of the blood-brain barrier. Pharmaceutical Res, 1998, 15, 993–1000. [Google Scholar]
  • Fernandez-Monreal M., Lopez-Atalaya J.P., Benchenane K., Cacquevel M., Dulin F., Le Caer J.P., Rossier J., Jarrige A.C., Mackenzie E.T., Colloc’h N., Ali C., Vivien D., Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem, 2004a, 279, 50850–50856. [CrossRef] [PubMed] [Google Scholar]
  • Fernandez-Monreal M., Lopez-Atalaya J.P., Benchenane K., Leveille F., Cacquevel M., Plawinski L., MacKenzie E.T., Bu G., Buisson A., Vivien D., Is tissue-type plasminogen activator a neuromodulator? Mol Cell Neurosci, 2004b, 25, 594–601. [CrossRef] [PubMed] [Google Scholar]
  • Fisher M., New approaches to neuroprotective drug development. Stroke, 2011, 42, S24–27. [CrossRef] [PubMed] [Google Scholar]
  • Gautier S., Pétrault O., Gele P., Laprais M., Bastide M., Bauters A., Deplanque D., Jude B., Caron J., Bordet R., Involvement of thrombolysis in recombinant tissue plasminogen activator-induced cerebral hemorrhages and effect on infarct volume and postischemic endothelial function. Stroke, 2003, 34, 2975–2979. [CrossRef] [PubMed] [Google Scholar]
  • Gautier S., Ouk T., Pétrault O., Caron J., Bordet R., Neutrophils contribute to intracerebral haemorrhages after treatment with recombinant tissue plasminogen activator following cerebral ischaemia. Br J Pharmacol, 2009, 156, 673–679. [CrossRef] [PubMed] [Google Scholar]
  • Ghersi-Egea J.F., Leninger-Muller B., Suleman G., Siest G., Minn A., Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem, 1994, 62, 1089–1096. [CrossRef] [PubMed] [Google Scholar]
  • Goldmann E., Vitalfärbung am zentral nerven System. Beitrag zur Physiologie des Plexus choroïdus und der Hirnhaute. 1913, Berlin. [Google Scholar]
  • Green A.R., Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol, 2008, 153, S325–S338. [CrossRef] [PubMed] [Google Scholar]
  • Gurwitz J.H., Gore J.M., Goldberg R.J., Barron H.V., Breen T., Rundle A.C., Sloan M.A., French W., Rogers W.J., Risk for intracranial hemorrhage after tissue plasminogen activator treatment for acute myocardial infarction. Participants in the National Registry of Myocardial Infarction 2. Ann Internal Med, 1998, 129, 597–604. [CrossRef] [Google Scholar]
  • Hacke W., Furlan A.J., Al-Rawi Y., Davalos A., Fiebach J.B., Gruber F., Kaste M., Lipka L.J., Pedraza S., Ringleb P.A., Rowley H.A., Schneider D., Schwamm L.H., Leal J.S., Söhngen M., Teal P.A., Wilhelm-Ogunbiyi K., Wintermark M., Warach S., Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet neurol, 2009, 8, 141–150. [CrossRef] [PubMed] [Google Scholar]
  • Hacke W., Kaste M., Bluhmki E., Brozman M., Davalos A., Guidetti D., Larrue V., Lees K.R., Medeghri Z., Machnig T., Schneider D., von Kummer R., Wahlgren N., Toni D., ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 h after acute ischemic stroke. N Engl J Med, 2008, 359, 1317–1329. [CrossRef] [PubMed] [Google Scholar]
  • Haseloff R.F., Blasig I.E., Bauer H.C., Bauer H., In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol, 2005, 25, 25–39. [CrossRef] [PubMed] [Google Scholar]
  • Hirano A., Kawanami T., Llena J.F., Electron microscopy of the blood-brain barrier in disease. Microsc Res Tech, 1994, 27, 543–556. [CrossRef] [PubMed] [Google Scholar]
  • Huang Z.G., Xue D., Preston E., Karbalai H., Buchan A.M., Biphasic opening of the blood-brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci, 1999, 26, 298–304. [PubMed] [Google Scholar]
  • Huber J.D., Egleton R.D., Davis T.P., Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci, 2001, 24, 719–725. [CrossRef] [PubMed] [Google Scholar]
  • Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev, 2004, 5, 347–360. [Google Scholar]
  • Inoue H., Jiang X.F., Katayama T., Osada S., Umesono K., Namura S., Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice. Neurosci Lett, 2003, 352, 203–206. [CrossRef] [PubMed] [Google Scholar]
  • Jasinska M., Owczarek J., Orszulak-Michalak D., Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol Rep, 2007, 59, 483–499. [PubMed] [Google Scholar]
  • Jette L., Murphy G.F., Leclerc J.M., Beliveau R., Interaction of drugs with P-glycoprotein in brain capillaries. Biochem Pharmacol, 1995, 50, 1701–1709. [CrossRef] [PubMed] [Google Scholar]
  • Jones, E.G., On the mode of entry of blood vessels into the cerebral cortex. J Anat, 1970, 106, 507–520. [PubMed] [Google Scholar]
  • Joo F., Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier. Br J Exp Pathol, 1971, 52, 646–649. [PubMed] [Google Scholar]
  • Kahle K.T., Simard J.M., Staley K.J., Nahed B.V., Jones P.S., Sun D., Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda), 2009, 24, 257–265. [CrossRef] [PubMed] [Google Scholar]
  • Kelly M.A., Shuaib A., Todd K.G., Matrix metalloproteinase activation and blood-brain barrier breakdown following thrombolysis. Exp Neurol, 2006, 200, 38–49. [CrossRef] [PubMed] [Google Scholar]
  • Kidwell C.S., Latour L., Saver J.L., Alger J.R., Starkman S., Duckwiler G., Jahan R., Vinuela F., Kang D.W., Warach S., Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke. Cerebrovasc Dis, 2008, 25, 338–343. [CrossRef] [PubMed] [Google Scholar]
  • Kielian T., Drew P.D., Effects of peroxisome proliferator-activated receptor-gamma agonists on central nervous system inflammation. J Neurosci Res, 2003, 71, 315–325. [CrossRef] [PubMed] [Google Scholar]
  • Kirino T., Ischemic tolerance. J Cereb Blood Flow Metab, 2002, 22, 1283–1296. [CrossRef] [PubMed] [Google Scholar]
  • Klatzo I., Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol, 1967, 26, 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Kruh G.D., Guo Y., Hopper-Borge E., Belinsky M.G., Chen Z.S., ABCC10, ABCC11, and ABCC12. Pflugers Arch, 2007, 453, 675–684. [CrossRef] [PubMed] [Google Scholar]
  • Kuhlmann C.R., Gerigk M., Bender B., Closhen D., Lessmann V., Luhmann H.J., Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro. Life Sci, 2008, 82, 1281–1287. [CrossRef] [PubMed] [Google Scholar]
  • Kunz A., Park L., Abe T., Gallo E.F., Anrather J., Zhou P., Iadecola C., Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci, 2007, 27, 7083–7093. [CrossRef] [PubMed] [Google Scholar]
  • Kusuhara H., Sugiyama Y., Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx, 2005, 2, 73–85. [CrossRef] [PubMed] [Google Scholar]
  • Lapchak P.A., Chapman D.F., Zivin J.A., Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke, 2000, 31, 3034–3040. [CrossRef] [PubMed] [Google Scholar]
  • Lapchak P.A., Araujo D.M., Zivin J.A., Comparison of Tenecteplase with Alteplase on clinical rating scores following small clot embolic strokes in rabbits. Exp Neurol, 2004, 185, 154–159. [CrossRef] [PubMed] [Google Scholar]
  • Lee S.R., Guo S.Z., Scannevin R.H., Magliaro B.C., Rhodes K.J., Wang X., Lo E.H., Induction of matrix metalloproteinase, cytokines and chemokines in rat cortical astrocytes exposed to plasminogen activators. Neurosci Letters, 2007, 417, 1–5. [CrossRef] [Google Scholar]
  • Lefebvre P., Chinetti G., Fruchart J.C., Staels B., Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest, 2006, 116, 571–580. [CrossRef] [PubMed] [Google Scholar]
  • Lewandowsky M., Zur lehre von der Cerebrospinalflüssigkeit. Z Klin Med, 1900, 480–494. [Google Scholar]
  • Liberatore G.T., Samson A., Bladin C., Schleuning W.D., Medcalf R.L., Vampire bat salivary plasminogen activator (desmoteplase): a unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke, 2003, 34, 537–543. [CrossRef] [PubMed] [Google Scholar]
  • Lopez-Atalaya J.P., Roussel B.D., Ali C., Maubert E., Petersen K.U., Bérézowski V., Cecchelli R., Orset C., Vivien D., Recombinant Desmodus rotundus salivary plasminogen activator crosses the blood-brain barrier through a low-density lipoprotein receptor-related protein-dependent mechanism without exerting neurotoxic effects. Stroke, 2007, 738, 1036–1043. [CrossRef] [Google Scholar]
  • Loscher W., Potschka H., Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx, 2005, 2, 86–98. [CrossRef] [PubMed] [Google Scholar]
  • Luo Y., Yin W., Signore A.P., Zhang F., Hong Z., Wang S., Graham S.H., Chen J., Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem, 2006, 97, 435–448. [CrossRef] [PubMed] [Google Scholar]
  • Mabuchi T., Kitagawa K., Ohtsuki T., Kuwabara K., Yagita Y., Yanagihara T., Hori M., Matsumoto M., Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke, 2000, 31, 1735–1743. [CrossRef] [PubMed] [Google Scholar]
  • Mandarino L.J., Sundarraj N., Finlayson J., Hassell H.R., Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res, 1993, 57, 609–621. [CrossRef] [PubMed] [Google Scholar]
  • Martin G., Duez H., Blanquart C., Bérézowski V., Poulain P., Fruchart J.C., Najib-Fruchart J., Glineur C., Staels B., Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest, 2001, 107, 1423–1432. [CrossRef] [PubMed] [Google Scholar]
  • Masada T., Hua Y., Xi G., Ennis S.R., Keep R.F., Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab, 2001, 21, 22–33. [CrossRef] [PubMed] [Google Scholar]
  • Mayhan W.G., Didion S.P., Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide. Stroke, 1996, 27, 965–969; discussion 970. [CrossRef] [PubMed] [Google Scholar]
  • Maynard E.A., Schultz R.L., Pease D.C., Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat, 1957, 100, 409–433. [CrossRef] [PubMed] [Google Scholar]
  • Mehra M., Henninger N., Hirsch J.A., Chueh J., Wakhloo A.K., Gounis M.J., Preclinical acute ischemic stroke modeling. J Neurointerv Surg, 2011, pages [Google Scholar]
  • Montaner J., Stroke biomarkers: Can they help us to guide stroke thrombolysis? Drug News Perspect, 2006, 19, 523–532. [CrossRef] [PubMed] [Google Scholar]
  • Moreno S., Farioli-Vecchioli S., Ceru M.P., Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience, 2004, 123, 131–145. [CrossRef] [PubMed] [Google Scholar]
  • Murry C.E., Jennings R.B., Reimer K.A., Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74, 1124–1136. [CrossRef] [PubMed] [Google Scholar]
  • Nag S., Pathophysiology of blood-brain barrier breakdown. Methods Mol Med, 2003, 89, 97–119. [PubMed] [Google Scholar]
  • Newman E.A., New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci, 2003, 26, 536–542. [CrossRef] [PubMed] [Google Scholar]
  • Nicole O., Docagne F., Ali C., Margaill I., Carmeliet P., MacKenzie E.T., Vivien D., Buisson A., The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med, 2001, 7, 59–64. [CrossRef] [PubMed] [Google Scholar]
  • NINDS., Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med, 1995, 333, 1581–1587. [CrossRef] [PubMed] [Google Scholar]
  • NINDS., Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke, 1997, 28, 2109–2118. [CrossRef] [PubMed] [Google Scholar]
  • Pantoni L., Sarti C., Inzitari D., Cytokines and cell adhesion molecules in cerebral ischemia: experimental bases and therapeutic perspectives. Arterioscler Thromb Vasc Biol, 1998, 18, 503–513. [CrossRef] [PubMed] [Google Scholar]
  • Pardridge W.M., Advances in cell biology of blood-brain barrier transport. Semin Cell Biol, 1991, 2, 419–426. [PubMed] [Google Scholar]
  • Pardridge W.M., Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol, 1992, 71, 3–10. [CrossRef] [PubMed] [Google Scholar]
  • Paumelle R., Staels B., Cross-talk between statins and PPARalpha in cardiovascular diseases: clinical evidence and basic mechanisms. Trends Cardiovasc Med, 2008, 18, 73–78. [CrossRef] [PubMed] [Google Scholar]
  • Payen J.F., Fauvage B., Falcon D., Lavagne P., Brain oedema following blood-brain barrier disruption: mechanisms and diagnosis. Ann Fr Anesth Reanim, 2003, 22, 220–225. [CrossRef] [PubMed] [Google Scholar]
  • Pellerin L., Magistretti P.J., Food for thought: challenging the dogmas. J Cereb Blood Flow Metab, 2003, 23, 1282–1286. [CrossRef] [PubMed] [Google Scholar]
  • Polavarapu R., Gongora M.C., Yi H., Ranganthan S., Lawrence D.A., Strickland D., Yepes M., Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood, 2007, 109, 3270–3278. [CrossRef] [PubMed] [Google Scholar]
  • Polavarapu R., An J., Zhang C., Yepes M., Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death. Am J Pathol, 2008, 172, 1355–1362. [CrossRef] [PubMed] [Google Scholar]
  • Povlishock J.T., Becker D.P., Sullivan H.G., Miller J.D., Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res, 1978, 153, 223–239. [CrossRef] [PubMed] [Google Scholar]
  • Reese T.S., Karnovsky M.J., Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol, 1967, 34, 207–217. [CrossRef] [PubMed] [Google Scholar]
  • Ricote M., Glass C.K., PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta, 2007, 1771, 926–935. [CrossRef] [PubMed] [Google Scholar]
  • Rosell A., Cuadrado E., Ortega-Aznar A., Hernandez-Guillamon M., Lo E.H., Montaner J., MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke, 2008, 39, 1121–1126. [CrossRef] [PubMed] [Google Scholar]
  • Samson A.L., Medcalf R.L., Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron, 2006, 50, 673–678. [CrossRef] [PubMed] [Google Scholar]
  • Sandoval K.E., Witt K.A., Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis, 2008, 32, 200–219. [CrossRef] [PubMed] [Google Scholar]
  • Saver J.L., Time is brain-quantified. Stroke, 2006, 37, 263–266. [CrossRef] [PubMed] [Google Scholar]
  • Saver J.L., Gornbein J., Grotta J., Liebeskind D., Lutsep H., Schwamm L., Scott P., Starkman S., Number needed to treat to benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-h window: joint outcome table analysis of the ECASS 3 trial. Stroke, 2009, 40, 2433–2437. [CrossRef] [PubMed] [Google Scholar]
  • Scherrmann J.M., Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin Drug Metab Toxicol, 2005, 1, 233–246. [CrossRef] [PubMed] [Google Scholar]
  • Schinkel A.H., Jonker J.W., Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev, 2003, 55, 3–29. [CrossRef] [PubMed] [Google Scholar]
  • Siao C.J., Fernandez S.R., Tsirka S.E., Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci, 2003, 23, 3234–3242. [PubMed] [Google Scholar]
  • Simard M., Arcuino G., Takano T., Liu Q.S., Nedergaard M., Signaling at the gliovascular interface. J Neurosci, 2003, 23, 9254–9262. [PubMed] [Google Scholar]
  • Soontornmalai A., Vlaming M.L., Fritschy J.M., Differential, strain-specific cellular and subcellular distribution of multidrug transporters in murine choroid plexus and blood-brain barrier. Neuroscience, 2006, 138, 159–169. [CrossRef] [PubMed] [Google Scholar]
  • Spatz H., Die bedeutung der vitalen farbung für die lehre von stoffanstausch zwischen dem zentralnervensystem und dem übrigen körper. Das morphologische substart der stoffwechselschranken im zentralorgan. Arch Physiat Nervenkr, 1933, 101, 267–358. [CrossRef] [Google Scholar]
  • Stenzel-Poore M.P., Stevens S.L., Simon R.P., Genomics of preconditioning. Stroke, 2004, 35, 2683–2686. [CrossRef] [PubMed] [Google Scholar]
  • Stenzel-Poore M.P., Stevens S.L., Xiong Z., Lessov N.S., Harrington C.A., Mori M., Meller R., Rosenzweig H.L., Tobar E., Shaw T.E., Chu X., Simon R.P., Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet, 2003, 362, 1028–1037. [CrossRef] [PubMed] [Google Scholar]
  • Stern L.S., Gautier R., Les rapports entre le liquide céphalo-rachidien et les éléments nerveux de l’axe cérébrospinal. Arch Inter Physiol, 1922, 17, 391–488. [CrossRef] [Google Scholar]
  • Su E.J., Fredriksson L., Geyer M., Folestad E., Cale J., Andrae J., Gao Y., Pietras K., Mann K., Yepes M., Strickland D.K., Betsholtz C., Eriksson U., Lawrence D., Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med, 2008, 14, 731–737. [CrossRef] [PubMed] [Google Scholar]
  • Walter F.K., Die allgemeinen grunglagen des stoffaus tauscher zwischen dem zentralnervensystem und dem übrigen körper. Arch Psychiat Nervenkr, 1933, 101, 195–230. [CrossRef] [Google Scholar]
  • Wang H., Golob E.J., Su M.Y., Vascular volume and blood-brain barrier permeability measured by dynamic contrast enhanced MRI in hippocampus and cerebellum of patients with MCI and normal controls. J Magn Reson Imaging, 2006, 24, 695–700. [CrossRef] [PubMed] [Google Scholar]
  • Wang X., Lee S.R., Arai K., Lee S.R., Tsuji K., Rebeck G.W., Lo E.H., Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med, 2003, 9, 1313–1317. [CrossRef] [PubMed] [Google Scholar]
  • Wang X., Tsuji K., Lee S.R., Ning M., Furie K.L., Buchan A.M., Lo E.H., Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke, 2004, 35, 2726–2730. [CrossRef] [PubMed] [Google Scholar]
  • Westergaard E., Go G., Klatzo I., Spatz M., Increased permeability of cerebral vessels to horseradish peroxidase induced by ischemia in Mongolian Gerbils. Acta Neuropathol, 1976, 35, 307–325. [PubMed] [Google Scholar]
  • Wolburg H., Neuhaus J., Kniesel U., Krauss B., Schmid E.M., Ocalan M., Farrell C., Risau W., Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci, 1994, 107, 1347–1357. [PubMed] [Google Scholar]
  • Yemisci M., Gursoy-Ozdemir Y., Vural A., Can A., Topalkara K., Dalkara T., Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med, 2009, 15, 1031–1037. [CrossRef] [PubMed] [Google Scholar]
  • Yepes M., Sandkvist M., Moore E.G., Bugge T.H., Strickland D.K., Lawrence D.A., Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest, 2003, 112, 1533–1540. [PubMed] [Google Scholar]
  • Yepes M., Roussel B.D., Ali C., Vivien D., Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci, 2009, 32, 48–55. [CrossRef] [PubMed] [Google Scholar]
  • Zacco A., Togo J., Spence K., Ellis A., Lloyd D., Furlong S., Piser T., 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci, 2003, 23, 11104–11111. [PubMed] [Google Scholar]
  • Zahler S., Kupatt C., Becker B.F., Endothelial preconditioning by transient oxidative stress reduces inflammatory responses of cultured endothelial cells to TNF-alpha. Faseb J, 2000, 14, 555–564. [PubMed] [Google Scholar]
  • Zhang F.Y., Chen X.C., Ren H.M., Bao W.M., Effects of ischemic preconditioning on blood-brain barrier permeability and MMP-9 expression of ischemic brain. Neurol Res, 2006, 28, 21–24. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X., Polavarapu R., She H., Mao Z., Yepes M., Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein mediate cerebral ischemia-induced nuclear factor-kappaB pathway activation. Am J Pathol, 2007, 171, 1281–1290. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y., Schuetz J.D., Elmquist W.F., Miller D.W., Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther, 2004, 311, 449–455. [CrossRef] [PubMed] [Google Scholar]
  • Zhao X., Ou Z., Grotta J.C., Waxham, N., Aronowski J., Peroxisome-proliferator-activated receptor-gamma (PPARgamma) activation protects neurons from NMDA excitotoxicity. Brain Res, 2006, 1073–1074, 460–469. [CrossRef] [PubMed] [Google Scholar]
  • Zhou S.G., Lei X.Y., Liao D.F., Effects of hypoxic preconditioning on the adhesion of neutrophils to vascular endothelial cells induced by hypoxia/reoxygenation. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2003, 15, 159–162. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.