Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 3, 2012
Page(s) 205 - 218
DOI https://doi.org/10.1051/jbio/2012023
Publié en ligne 22 novembre 2012
  • Aftab S., Semenec L., Chu J.S., Chen N., Identification and characterization of novel human tissue-specific RFX transcription factors. BMC Evol Biol, 2008, 8, 226. [CrossRef] [PubMed] [Google Scholar]
  • Ait-Lounis A., Baas D., Barras E., Benadiba C., Charollais A., Nlend Nlend R., Liegeois D., Meda P., Durand B., Reith W., Novel function of the ciliogenic transcription factor RFX3 in development of the endocrine pancreas. Diabetes, 2007, 56, 950–959. [CrossRef] [PubMed] [Google Scholar]
  • Alten L., Schuster-Gossler K., Beckers A., Groos S., Ulmer B., Hegermann J., Ochs M., Gossler A., Differential regulation of node formation, nodal ciliogenesis and cilia positioning by Noto and Foxj1. Development, 2012, 139, 1276–1284. [CrossRef] [PubMed] [Google Scholar]
  • Arai D., Hatano A., Higashinakagawa T., Oleed, a medaka Polycomb group gene, regulates ciliogenesis and left-right patterning. Genes to cells: devoted to molecular & cellular mechanisms, 2009, 14, 1359–1367. [CrossRef] [Google Scholar]
  • Arnaiz O., Malinowska A., Klotz C., Sperling L., Dadlez M., Koll F., Cohen J., Cildb: a knowledge base for centrosomes and cilia. Database (Oxford) 2009, bap022. [Google Scholar]
  • Ashique A.M., Choe Y., Karlen M., May S.R., Phamluong K., Solloway M.J., Ericson J., Peterson A.S., The Rfx4 transcription factor modulates Shh signaling by regional control of ciliogenesis. Sci Signal, 2009, 2, ra70. [CrossRef] [PubMed] [Google Scholar]
  • Avidor-Reiss T., Maer A.M., Koundakjian E., Polyanovsky A., Keil T., Subramaniam S., Zuker C.S., Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell, 2004, 117, 527–539. [CrossRef] [PubMed] [Google Scholar]
  • Baas D., Meiniel A., Benadiba C., Bonnafe E., Meiniel O., Reith W., Durand B., A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci, 2006, 24, 1020–1030. [CrossRef] [PubMed] [Google Scholar]
  • Bahe S., Stierhof Y.D., Wilkinson C.J., Leiss F., Nigg E.A., Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol, 2005, 171, 27–33. [CrossRef] [PubMed] [Google Scholar]
  • Baker E.J., Keller L.R., Schloss J.A., Rosenbaum J.L., Protein synthesis is required for rapid degradation of tubulin mRNA and other deflagellation-induced RNAs in Chlamydomonas reinhardi. Mol Cell Biol, 1986, 6, 54–61. [PubMed] [Google Scholar]
  • Baker K., Beales P.L., Making sense of cilia in disease : the human ciliopathies. Am J Med Genet, 2009, 151C, 281–295. [Google Scholar]
  • Beckers A., Alten L., Viebahn C., Andre P., Gossler A., The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc Natl Acad Sci USA, 2007, 104, 15765–15770. [CrossRef] [Google Scholar]
  • Bialas N.J., Inglis P.N., Li C., Robinson J.F., Parker J.D., Healey M.P., Davis E.E., Inglis C.D., Toivonen T., Cottell D.C., Blacque O.E., Quarmby L.M., Katsanis N., Leroux M.R., Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins. J Cell Sci, 2009, 122, 611–624. [CrossRef] [PubMed] [Google Scholar]
  • Bisgrove B.W., Makova S., Yost H.J., Brueckner M., RFX2 is essential in the ciliated organ of asymmetry and an RFX2 transgene identifies a population of ciliated cells sufficient for fluid flow. Dev Biol, 2011, 363, 166–178. [Google Scholar]
  • Blackshear P.J., Graves J.P., Stumpo D.J., Cobos I., Rubenstein J.L., Zeldin D.C., Graded phenotypic response to partial and complete deficiency of a brain-specific transcript variant of the winged helix transcription factor RFX4. Development, 2003, 130, 4539–4552. [CrossRef] [PubMed] [Google Scholar]
  • Blacque O.E., Perens E.A., Boroevich K.A., Inglis P.N., Li C., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., McKay S.J., Huang P., Swoboda P., Jones S.J., Marra M.A., Baillie D.L., Moerman D.G., Shaham S., Leroux M.R., Functional genomics of the cilium, a sensory organelle. Curr Biol, 2005, 15, 935–941. [CrossRef] [PubMed] [Google Scholar]
  • Blatt E.N., Yan X.H., Wuerffe M.K., Hamilos D.L., Brody S.L., Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am J Resp Cell Mol Biol, 1999, 21, 168–176. [CrossRef] [Google Scholar]
  • Bonnafe E., Touka M., Ait-Lounis A., Baas D., Barras E., Ucla C., Moreau A., Flamant F., Dubruille R., Couble P., Collignon J., Durand B., Reith W., The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol Cell Biol, 2004, 24, 4417–4427. [CrossRef] [PubMed] [Google Scholar]
  • Brody S.L., Yan X.H., Wuerffel M.K., Song S.K., Shapiro S.D., Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Resp Cell Mol Biol, 2000, 23, 45–51. [Google Scholar]
  • Cachero S., Simpson T.I., Zur Lage P.I., Ma L., Newton F.G., Holohan E.E., Armstrong J.D., Jarman A.P., The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons. PLoS Biol, 2011, 9, e1000568. [CrossRef] [PubMed] [Google Scholar]
  • Cardenas-Rodriguez M., Badano, J.L., Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet, 2009, 151C, 263–280. [CrossRef] [PubMed] [Google Scholar]
  • Chen J., Knowles H.J., Hebert J.L., Hackett B.P., Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest, 1998, 102, 1077–1082. [CrossRef] [PubMed] [Google Scholar]
  • Chen N., Mah A., Blacque O.E., Chu J., Phgora K., Bakhoum M.W., Newbury C.R., Khattra J., Chan S., Go A., Efimenko E., Johnsen R., Phirke P., Swoboda P., Marra M., Moerman D.G., Leroux M.R., Baillie D.L., Stein L.D., Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biol, 2006, 7, R126. [CrossRef] [PubMed] [Google Scholar]
  • Chung M.I., Peyrot S.M., Leboeuf S., Park T.J., McGary K.L., Marcotte E.M., Wallingford J.B., RFX2 is broadly required for ciliogenesis during vertebrate development. Dev Biol, 2011, 363, 155–165. [Google Scholar]
  • Clausen B.E., Waldburger, J.M., Schwenk F., Barras E., Mach B., Rajewsky K., Forster I., Reith W., Residual MHC class II expression on mature dendritic cells and activated B cells in RFX5-deficient mice. Immunity, 1998, 8, 143–155. [CrossRef] [PubMed] [Google Scholar]
  • Cruz C., Ribes V., Kutejova E., Cayuso J., Lawson V., Norris D., Stevens J., Davey M., Blight K., Bangs F., Mynett A., Hirst E., Chung R., Balaskas, N., Brody S.L., Marti E., Briscoe J., Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development, 2010, 137, 4271–4282. [CrossRef] [PubMed] [Google Scholar]
  • Czarnecki P.G., Shah J.V., The ciliary transition zone : from morphology and molecules to medicine. Trends Cell Biol, 2012, 22, 201–210. [CrossRef] [PubMed] [Google Scholar]
  • Deblandre G.A., Wettstein D.A., Koyano-Nakagawa N., Kintner C., A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development, 1999, 126, 4715–4728. [PubMed] [Google Scholar]
  • Dubruille R., Laurençon A., Vandaele C., Shishido E., Coulon-Bublex M., Swoboda P., Couble P., Kernan M., Durand B., Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development, 2002, 129, 5487–5498. [CrossRef] [PubMed] [Google Scholar]
  • Durand B., Sperisen P., Emery P., Barras E., Zufferey M., Mach B., Reith W., RFXAP, a novel subunit of the RFX DNA binding complex is mutated in MHC class II deficiency. EMBO J, 1997, 16, 1045–1055. [CrossRef] [PubMed] [Google Scholar]
  • Efimenko E., Bubb K., Mak H.Y., Holzman T., Leroux, M.R., Ruvkun G., Thomas, J.H., Swoboda P., Analysis of xbx genes in C. elegans. Development, 2005, 132, 1923–1934. [CrossRef] [PubMed] [Google Scholar]
  • Eggenschwiler J.T., Anderson K.V., Cilia and developmental signaling. Ann Rev Cell Dev Biol, 2007, 23, 345–373. [CrossRef] [PubMed] [Google Scholar]
  • El Zein L., Ait-Lounis A., Morle L., Thomas J., Chhin B., Spassky N., Reith W., Durand B., RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci, 2009, 122, 3180–3189. [CrossRef] [PubMed] [Google Scholar]
  • Emery P., Durand B., Mach B., Reith W., RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucl Acids Res, 1996a, 24, 803–807. [CrossRef] [Google Scholar]
  • Emery P., Strubin M., Hofmann K., Bucher P., Mach B., Reith W., A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity. Mol Cell Biol, 1996b, 16, 4486–4494. [PubMed] [Google Scholar]
  • Gajiwala K.S., Chen H., Cornille F., Roques B.P., Reith W., Mach B., Burley S.K., Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature, 2000, 403, 916–921. [CrossRef] [PubMed] [Google Scholar]
  • Gherman A., Davis E.E., Katsanis N., The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet, 2006, 38, 961–962. [CrossRef] [PubMed] [Google Scholar]
  • Gomperts B.N., Gong-Cooper X., Hackett B.P., Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci, 2004, 117, 1329–1337. [CrossRef] [PubMed] [Google Scholar]
  • Gopfert M.C., Robert D., Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA, 2003, 100, 5514–5519. [CrossRef] [Google Scholar]
  • Gopfert M.C., Humphris, A.D., Albert, J.T., Robert D., Hendrich O., Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci USA, 2005, 102, 325–330. [CrossRef] [Google Scholar]
  • Gresh L., Fischer E., Reimann A., Tanguy M., Garbay S., Shao X., Hiesberger T., Fiette L., Igarashi P., Yaniv M., Pontoglio M., A transcriptional network in polycystic kidney disease. EMBO J, 2004, 23, 1657–1668. [CrossRef] [PubMed] [Google Scholar]
  • Hackett B.P., Brody S.L., Liang M., Zeitz I.D., Bruns L.A., Gitlin J.D., Primary structure of hepatocyte nuclear factor/forkhead homologue 4 and characterization of gene expression in the developing respiratory and reproductive epithelium. Proc Natl Acad Sci USA, 1995, 92, 4249–4253. [CrossRef] [Google Scholar]
  • Haycraft C.J., Swoboda P., Taulman P.D., Thomas J.H., Yoder B.K., The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development, 2001, 128, 1493–1505. [PubMed] [Google Scholar]
  • Haycraft C.J., Schafer J.C., Zhang Q., Taulman P.D., Yoder B.K., Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Exp Cell Res, 2003, 284, 251–263. [CrossRef] [PubMed] [Google Scholar]
  • Hiesberger T., Shao X., Gourley E., Reimann A., Pontoglio M., Igarashi P., Role of the hepatocyte nuclear factor-1beta (HNF-1beta) C-terminal domain in Pkhd1 (ARPKD) gene transcription and renal cystogenesis. J Biol Chem, 2005, 280, 10578–10586. [CrossRef] [PubMed] [Google Scholar]
  • Hirschner W., Pogoda H.M., Kramer C., Thiess U., Hamprecht B., Wiesmuller K.H., Lautner M., Verleysdonk S., Biosynthesis of Wdr16, a marker protein for kinocilia-bearing cells, starts at the time of kinocilia formation in rat, and wdr16 gene knockdown causes hydrocephalus in zebrafish. J Neurochem, 2007, 101, 274–288. [CrossRef] [PubMed] [Google Scholar]
  • Hong S.K., Dawid I.B., FGF-dependent left-right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc Natl Acad Sci USA, 2009, 106, 2230–2235. [CrossRef] [Google Scholar]
  • Huang M., Zhou Z., Elledge S.J., The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell, 1998, 94, 595–605. [CrossRef] [PubMed] [Google Scholar]
  • Huang T., You Y., Spoor M.S., Richer E.J., Kudva V.V., Paige R.C., Seiler M.P., Liebler J.M., Zabner J., Plopper C.G., Brody S.L., Foxj1 is required for apical localization of ezrin in airway epithelial cells. J Cell Sci, 2003, 116, 4935–4945. [CrossRef] [PubMed] [Google Scholar]
  • Inglis P.N., Boroevich K.A., Leroux M.R., Piecing together a ciliome. Trends Genet, 2006, 22, 491–500. [CrossRef] [PubMed] [Google Scholar]
  • Ishikawa H., Marshall W.F., Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol, 2011, 12, 222–234. [CrossRef] [PubMed] [Google Scholar]
  • Jacquet B.V., Salinas-Mondragon R., Liang H., Therit B., Buie J.D., Dykstra M., Campbell K., Ostrowski L.E., Brody S.L., Ghashghaei H.T., FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development, 2009, 136, 4021–4031. [CrossRef] [PubMed] [Google Scholar]
  • Jain R., Pan J., Driscoll J.A., Wisner J.W., Huang T., Gunsten S.P., You Y., Brody S.L., Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am J Resp Cell Mol Biol, 2010, 43, 731–739. [CrossRef] [Google Scholar]
  • Kiselak E.A., Shen X., Song J., Gude D.R., Wang J., Brody, S.L., Strauss J.F., 3rd, Zhang Z., Transcriptional regulation of an axonemal central apparatus gene, sperm-associated antigen 6, by a SRY-related high mobility group transcription factor, S-SOX5. J Biol Chem, 2010, 285, 30496–30505. [CrossRef] [PubMed] [Google Scholar]
  • Laurençon A., Dubruille R., Efimenko E., Grenier G., Bissett R., Cortier E., Rolland V., Swoboda P., Durand B., Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biol, 2007, 8, R195. [CrossRef] [PubMed] [Google Scholar]
  • Lee E., Sivan-Loukianova E., Eberl D.F., Kernan M.J., An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol, 2008, 18, 1899–1906. [CrossRef] [PubMed] [Google Scholar]
  • Lewis M.A., Quint E., Glazier A.M., Fuchs H., De Angelis M.H., Langford C., van Dongen S., Abreu-Goodger C., Piipari M., Redshaw N., Dalmay T., Moreno-Pelayo M.A., Enright A.J., Steel K.P., An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet, 2009, 41, 614–618. [CrossRef] [PubMed] [Google Scholar]
  • Li J.B., Gerdes J.M., Haycraft C.J., Fan Y., Teslovich T.M., May-Simera H., Li H., Blacque O.E., Li L., Leitch C.C., Lewis R.A., Green J.S., Parfrey P.S., Leroux M.R., Davidson W.S., Beales P.L., Guay-Woodford L.M., Yoder B.K., Stormo G.D., Katsanis N., Dutcher S.K., Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell, 2004, 117, 541–552. [CrossRef] [PubMed] [Google Scholar]
  • Lim L., Zhou H., Costa R.H., The winged helix transcription factor HFH-4 is expressed during choroid plexus epithelial development in the mouse embryo. Proc Natl Acad Sci USA, 1997, 94, 3094–3099. [CrossRef] [Google Scholar]
  • Lin L., Spoor M.S., Gerth A.J., Brody S.L., Peng S.L., Modulation of Th1 activation and inflammation by the NF-kappaB repressor Foxj1. Science, 2004, 303, 1017–1020. [CrossRef] [PubMed] [Google Scholar]
  • Lin L., Brody S.L., Peng S.L., Restraint of B cell activation by Foxj1-mediated antagonism of NF-kappa B and IL-6. J Immunol, 2005, 175, 951–958. [PubMed] [Google Scholar]
  • Liu Y., Pathak N., Kramer-Zucker A., Drummond I.A., Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development, 2007, 134, 1111–1122. [CrossRef] [PubMed] [Google Scholar]
  • Ma L., Jarman, A.P., Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation. J Cell Sci, 2011, 124, 2622–2630. [CrossRef] [PubMed] [Google Scholar]
  • Marcet B., Chevalier B.Luxardi G., Coraux C., Zaragosi L.E., Cibois M., Robbe-Sermesant K., Jolly T., Cardinaud B., Moreilhon C., Giovannini-Chami L., Nawrocki-Raby B., Birembaut P., Waldmann R., Kodjabachian L., Barbry P., Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat Cell Biol, 2011, 13, 693–699. [CrossRef] [PubMed] [Google Scholar]
  • Marshall W.F., Basal bodies platforms for building cilia. Curr Top Dev Biol, 2008, 85, 1–22. [CrossRef] [PubMed] [Google Scholar]
  • Masternak K., Barras E., Zufferey M., Conrad B., Corthals G., Aebersold R., Sanchez J.C., Hochstrasser D.F., Mach B., Reith W., A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat Genet, 1998, 20, 273–277. [CrossRef] [PubMed] [Google Scholar]
  • Mazet F., Yu J.K., Liberles D.A., Holland L.Z., Shimeld S.M., Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene, 2003, 316, 79–89. [CrossRef] [PubMed] [Google Scholar]
  • Mencía A., Modamio-Høybjør S., Redshaw N., Morín M., Mayo-Merino F., Olavarrieta L., Aguirre L.A., del Castillo I., Steel K.P., Dalmay T., Moreno F., Moreno-Pelayo M.A., Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet, 2009, 41, 609–613. [CrossRef] [PubMed] [Google Scholar]
  • Mukhopadhyay S., Lu Y., Qin H., Lanjuin A., Shaham S., Sengupta P., Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J, 2007, 26, 2966–2980. [CrossRef] [PubMed] [Google Scholar]
  • Neugebauer J.M., Amack J.D., Peterson A.G., Bisgrove B.W., Yost H.J., FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature, 2009, 458, 651–654. [CrossRef] [PubMed] [Google Scholar]
  • Newton F.G., Zur Lage P.I., Karak S., Moore D.J., Gopfert M.C., Jarman A.P., Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization. Dev Cell, 2012, 22, 1221–1233. [CrossRef] [PubMed] [Google Scholar]
  • Ou G., Blacque O.E., Snow J.J., Leroux M.R., Scholey J.M., Functional coordination of intraflagellar transport motors. Nature, 2005, 436, 583–587. [CrossRef] [PubMed] [Google Scholar]
  • Pathak N., Obara T., Mangos S., Liu Y., Drummond I.A., The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell, 2007, 18, 4353–4364. [CrossRef] [PubMed] [Google Scholar]
  • Phirke P., Efimenko E., Mohan S., Burghoorn J., Crona F., Bakhoum M.W., Trieb M., Schuske K., Jorgensen E.M., Piasecki B.P., Leroux M.R., Swoboda P., Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Dev Biol, 2011 357, 235–247. [CrossRef] [PubMed] [Google Scholar]
  • Piasecki B.P., Burghoorn J., Swoboda P., Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals. Proc Natl Acad Sci USA, 2010, 107, 12969–12974. [CrossRef] [Google Scholar]
  • Pierreux C.E., Poll A.V., Kemp C.R., Clotman F., Maestro M.A., Cordi S., Ferrer J., Leyns L., Rousseau G.G., Lemaigre F.P., The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology, 2006, 130, 532–541. [CrossRef] [PubMed] [Google Scholar]
  • Redeker V., Levilliers N., Vinolo E., Rossier J., Jaillard D., Burnette D., Gaertig J., Bre M.H., Mutations of tubulin glycylation sites reveal cross-talk between the C termini of alpha- and beta-tubulin and affect the ciliary matrix in Tetrahymena. J Biol Chem, 2005, 280, 596–606. [PubMed] [Google Scholar]
  • Reith W., Herrero-Sanchez C., Kobr M., Silacci P., Berte C., Barras, E., Fey S., Mach B., MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain. Genes Dev, 1990, 4, 1528–1540. [CrossRef] [PubMed] [Google Scholar]
  • Sacheli R., Nguyen L., Borgs L., Vandenbosch R., Bodson M., Lefebvre P., Malgrange B., Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear. Gene Expr Patterns, 2009, 9, 364–370. [CrossRef] [PubMed] [Google Scholar]
  • Schafer J.C., Haycraft C.J., Thomas J.H., Yoder B.K., Swoboda P., XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. Mol Biol Cell, 2003, 14, 2057–2070. [CrossRef] [PubMed] [Google Scholar]
  • Seeley E.S., Nachury M.V., The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci, 2010, 123, 511–518. [CrossRef] [PubMed] [Google Scholar]
  • Senti G., Swoboda P., Distinct isoforms of the RFX transcription factor DAF-19 regulate ciliogenesis and maintenance of synaptic activity. Mol Biol Cell, 2008, 19, 5517–5528. [CrossRef] [PubMed] [Google Scholar]
  • Smith S.B., Qu H.Q., Taleb N., Kishimoto N.Y., Scheel D.W., Lu Y., Patch A.M., Grabs R., Wang J., Lynn F.C., Miyatsuka T., Mitchell J., Seerke R., Désir J., Eijnden S.V., Abramowicz M., Kacet N., Weill J., Renard M.E., Gentile M., Hansen I., Dewar K., Hattersley A.T., Wang R., Wilson M.E, Johnson J.D., Polychronakos C., German M.S., Rfx6 directs islet formation and insulin production in mice and humans. Nature, 2010, 463, 775–780. [CrossRef] [PubMed] [Google Scholar]
  • Sorokin S.P., Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci, 1968, 3, 207–230. [PubMed] [Google Scholar]
  • Spassky N., Merkle F.T., Flames N., Tramontin, A.D., Garcia-Verdugo J.M., Alvarez-Buylla A., Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci, 2005, 25, 10–18. [CrossRef] [PubMed] [Google Scholar]
  • Steimle V., Durand B., Barras E., Zufferey M., Hadam, M.R., Mach B., Reith W., A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev, 1995, 9, 1021–1032. [CrossRef] [PubMed] [Google Scholar]
  • Stubbs J.L., Oishi I., Izpisua Belmonte J.C., Kintner C., The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet, 2008, 40, 1454–1460. [CrossRef] [PubMed] [Google Scholar]
  • Stubbs J.L., Vladar E.K., Axelrod J.D., Kintner C., Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat Cell Biol, 2012, 14, 140–147. [CrossRef] [PubMed] [Google Scholar]
  • Swoboda P., Adler H.T., Thomas J.H., The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell, 2000, 5, 411–421. [Google Scholar]
  • Tichelaar J.W., Lim L., Costa R.H., Whitsett J.A., HNF-3/forkhead homologue-4 influences lung morphogenesis and respiratory epithelial cell differentiation in vivo. Dev Biol, 1999, 213, 405–417. [CrossRef] [PubMed] [Google Scholar]
  • Tsao P.N., Vasconcelos M., Izvolsky K.I., Qian J., Lu J., Cardoso W.V., Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development, 2009, 136, 2297–2307. [CrossRef] [PubMed] [Google Scholar]
  • Venugopalan S.R., Amen M.A., Wang J., Wong L., Cavender A.C., D’Souza R.N., Akerlund M., Brody S.L., Hjalt T.A., Amendt B.A., Novel expression and transcriptional regulation of FoxJ1 during oro-facial morphogenesis. Hum Mol Genet, 2008, 17, 3643–3654. [CrossRef] [PubMed] [Google Scholar]
  • Wang J., Schwartz, H.T., Barr M.M., Functional specialization of sensory cilia by an RFX transcription factor isoform. Genetics, 2010, 186, 1295–1307. [CrossRef] [PubMed] [Google Scholar]
  • Winkelbauer M.E., Schafer J.C., Haycraft C.J., Swoboda P., Yoder B.K., The C. elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception. J Cell Sci, 2005, 118, 5575–5587. [CrossRef] [PubMed] [Google Scholar]
  • Wong S.Y., Reiter J.F., The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol, 2008, 85, 225–260. [CrossRef] [PubMed] [Google Scholar]
  • Yang J., Liu X., Yue G., Adamian M., Bulgakov O., Li T., Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J Cell Biol, 2002, 159, 431–440. [CrossRef] [PubMed] [Google Scholar]
  • Yang J., Adamian M., Li T., Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell, 2006, 17, 1033–1040. [CrossRef] [PubMed] [Google Scholar]
  • You Y., Huang T., Richer E.J., Schmidt J.E., Zabner J., Borok Z., Brody S.L., Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2004, 286, L650–657. [CrossRef] [PubMed] [Google Scholar]
  • Yu X., Ng, C.P., Habacher H., Roy S., Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet, 2008, 40, 1445–1453. [CrossRef] [PubMed] [Google Scholar]
  • Yu X., Lau D., Ng C.P., Roy S., Cilia-driven fluid flow as an epigenetic cue for otolith biomineralization on sensory hair cells of the inner ear. Development, 2011, 138, 487–494. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.