Accès gratuit
Biologie Aujourd'hui
Volume 206, Numéro 4, 2012
Journée Claude Bernard 2011
Page(s) 291 - 299
Publié en ligne 19 février 2013
  • Abraham E., Rigo G., Szekely G., Nagy R., Koncz C., Szabados L., Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol, 2003, 51, 363 − 372. [CrossRef] [PubMed] [Google Scholar]
  • Ali Q., Ashraf M., Athar H.U.R., Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot, 2007, 39, 1133−1144. [Google Scholar]
  • Ali Q., Ashraf M., Shahbaz M., Humera H., Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants. Pak J Bot, 2008, 40, 211−219. [Google Scholar]
  • Alia M.P., Matysik J., Effect of proline on the production of singlet oxygen. Amino Acids, 2001, 21, 195 − 200. [CrossRef] [PubMed] [Google Scholar]
  • Ben Ahmed C., Ben Rouina B., Sensoy S., Boukhriss M., Ben Abdullah F., Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem, 2010, 58, 4216−4222. [CrossRef] [PubMed] [Google Scholar]
  • Borsani O., Zhu J., Verslues P.E., Sunkar R., Zhu J.-K., Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123, 1279−1291. [CrossRef] [PubMed] [Google Scholar]
  • Cecchini M.N., Monteoliva I.M., Marya E.A., Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol, 2011, 155, 1947−1959. [CrossRef] [PubMed] [Google Scholar]
  • Chadalavada S., B Rajendrakumar., Reddy V., Reddy A., Proline-protein interactions: protection of structural and functional integrity of M4 lactate dehydrogenase. Biochem Biophys Res Commun, 1994, 201, 957−963. [CrossRef] [PubMed] [Google Scholar]
  • Chen J., Zhang Y., Wang C., Lü W., Jin J.B., Hua X., Proline induces calcium-mediated oxidative burst and salicylic acid signaling. Amino Acids, 2011, 40, 1473−1484. [CrossRef] [PubMed] [Google Scholar]
  • Deuschle K., Funck D., Forlani G., Stransky H., Biehl A., Leister D., van der Graaff E., Kunze R., Frommer W.B., The role of Δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell, 2004, 16, 3413−3425. [CrossRef] [PubMed] [Google Scholar]
  • Di Martino C., Pizzuto R., Pallotta M.L., De Santis A., Passarella S., Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta, 2006, 223, 1123−1133. [CrossRef] [PubMed] [Google Scholar]
  • Fabro G., Kovács I., Pavet V., Szabados L., Alvarez M.E., Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact, 2004, 17, 343–350. [CrossRef] [PubMed] [Google Scholar]
  • Floyd R.A., Nagy I., Formation of long-lived hydroxyl free-radical adducts of proline and hydroxyproline in a Fenton reaction. Biochim Biophys Acta, 1984, 790, 94−97. [CrossRef] [PubMed] [Google Scholar]
  • Funck D., Stadelhofer B., Koch W., Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol, 2008, 17, 8 − 40. [Google Scholar]
  • Gadallah M.A.A., Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant, 1999, 42, 249−257. [CrossRef] [Google Scholar]
  • Ghars M.A., Parre E., Leprince A.S., Bordenave M., Lefebvre D., Richard L., Abdelly C., Savouré A., Opposite lipid signalling pathways tightly control proline accumulation in Arabidopsis thaliana and Thellungiella halophila. In C. Abdelly, M. Ashraf, C. Grignon, M. Ozturk (Eds.), Biosaline Agriculture and Salinity Tolerance in Plants, 2008a, pp. 317−332. [Google Scholar]
  • Ghars M.A., Parre E., Debez A., Bordenave M., Richard L., Leport L., Bouchereau A., Savouré A., Abdelly C., Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J Plant Physiol, 2008b, 165, 588−599. [CrossRef] [PubMed] [Google Scholar]
  • Ghars M.A., Richard L., Lefebvre-De Vos D., Leprince A.S., Parre E., Bordenave M., Abdelly C., Savouré A., Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress. Plant Cell Physiol, 2012, 53, 183−192. [CrossRef] [PubMed] [Google Scholar]
  • Hamilton E., Heckathorn S., Mitochondrial adaptations to NaCl. Complex I is protected by antioxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001, 126, 1266−1274. [CrossRef] [PubMed] [Google Scholar]
  • Hanson J., Hanssen M., Wiese A., Hendriks M., Smeekens S., The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J, 2008, 53, 935−949. [CrossRef] [PubMed] [Google Scholar]
  • Hare P.D., Cress W.A., Van Staden J., Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ, 1998, 21, 535−553. [CrossRef] [Google Scholar]
  • Hare P.D., Cress W.A., Van Staden J., The effects of exogenous proline and proline analogues on in vitro shoot organogenesis in Arabidopsis. Plant Growth Regul, 2001, 34, 203 − 207. [CrossRef] [Google Scholar]
  • Hayashi F., Ichino T., Osanai R., Wada K., Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol, 2000, 41, 1096−1101. [CrossRef] [PubMed] [Google Scholar]
  • Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Aqil A., Role of proline under changing environment. Plant Signal Behav, 2012, 7, 1 − 11. [CrossRef] [PubMed] [Google Scholar]
  • Hua B., Guo W.Y., Effect of exogenous proline on SOD and POD activity of soybean callus under salt stress. Acta Agric Boreali-Sin, 2002, 17, 37−40. [Google Scholar]
  • Kant S., Kant P., Raveh E., Barak S., Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ, 2006, 29, 1220 − 1234. [CrossRef] [PubMed] [Google Scholar]
  • KaviKishor P.B., Hong Z., Miao G.H., Hu C.A.A., Verma D.P.S., Overexpression of Δ1-pyrroline-5-carboxylate synthase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108, 1387−1394. [PubMed] [Google Scholar]
  • Liu J., Zhu J.-K., Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol, 1997, 114, 591 − 596. [CrossRef] [PubMed] [Google Scholar]
  • Megdiche W., Ben Amor N., Debez A., Hessini K., Ksouri R., Abdelly C., Physiological and biochemical traits involved in the genotypic variability to salt tolerance of Tunisian Cakile maritima. Afr J Ecol, 2009, 47, 774 − 783. [CrossRef] [Google Scholar]
  • Miller G., Honig A., Stein H., Suzuki N., Mittler R., Zilberstein A., Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem, 2009, 284, 26482 − 26492. [CrossRef] [PubMed] [Google Scholar]
  • Mishra S., Dubey R.S., Inhibition of ribonuclease and protease activities in arsenic-exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol, 2006, 163, 927−936. [CrossRef] [PubMed] [Google Scholar]
  • Parre E., Ghars M.A., Leprince A.-S., Thiery L., Lefebvre D., Bordenave M., Luc R., Mazars C., Abdelly C., Savouré A., Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol, 2007, 144, 503−512. [CrossRef] [PubMed] [Google Scholar]
  • Peng Z., Lu Q., Verma D. P., Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet, 1996, 253, 334−341. [PubMed] [Google Scholar]
  • Satoh R., Nakashima K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K., ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol, 2002, 130, 709 − 719. [CrossRef] [PubMed] [Google Scholar]
  • Satoh R., Fujita Y., Nakashima K., Shinozaki K., Yamaguchi-Shinozaki K.Y., A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol, 2004, 45, 309−317. [CrossRef] [PubMed] [Google Scholar]
  • Savouré A., Hua X.J., Bertauche N., Van Montagu M., Verbruggen N., Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet, 1997, 254, 104−109. [CrossRef] [PubMed] [Google Scholar]
  • Schobert B., Tschesche H., Unusual properties of proline and its interaction with proteins. Biochim Biophys Acta, 1978, 541, 270−277. [CrossRef] [PubMed] [Google Scholar]
  • Senthil-Kumar M., Mysore K.S., Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell Environ, 2012, 35, 1329 − 1343. [CrossRef] [PubMed] [Google Scholar]
  • Servet C., Ghelis T., Richard L., Zilberstein A., Savouré A., Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Front Biosci, 2012, 17, 607 − 620. [CrossRef] [PubMed] [Google Scholar]
  • Sharma S.S., Schat H., Vooijs R., In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 1998, 49, 1531−1535. [CrossRef] [PubMed] [Google Scholar]
  • Sharma S., Verslues P.E., Mechanisms independent of ABA or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ, 2010, 33, 1838−1851. [CrossRef] [PubMed] [Google Scholar]
  • Sharma S., Villamor J.G., Verslues P.E., Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol, 2011, 157, 292−304. [CrossRef] [PubMed] [Google Scholar]
  • Slama I., Messedi D., Ghnaya T., Savouré A., Abdelly C., Effects of water-deficit on growth and proline metabolism in Sesuvium portulacastrum. Environ Exp Bot, 2006, 56, 231 − 238. [CrossRef] [Google Scholar]
  • Smirnoff N., Cumbes Q.J., Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989, 28, 1057−1060. [CrossRef] [Google Scholar]
  • Solomon A., Beer S., Waisel Y., Paleg L.G., Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence of proline-related compatible solutes. Physiol Plant, 1994, 90, 198 − 204. [CrossRef] [Google Scholar]
  • Strizhov N., Abraham E., Okresz L., Blickling S., Zilberstein A., Schell J., Koncz C., Szabados L., Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J, 1997, 12, 557−569. [CrossRef] [PubMed] [Google Scholar]
  • Szabados L., Savouré A., Proline: a multifunctional amino-acid. Trends Plant Sci, 2010, 15, 89−97. [Google Scholar]
  • Szekely G., Abraham E., Cselo A., Rigo G., Zsigmond L., Csiszar J., Ayaydin F., Strizhov N., Jasik J., Schmelzer E., Koncz C., Szabados L., Duplicated P5CS genesof Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J, 2008, 53, 11−28. [CrossRef] [PubMed] [Google Scholar]
  • Thiery L., Leprince A.-S., Lefebvre D., Ghars M.A., Debarbieux E., Savouré A., Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J Biol Chem, 2004, 279, 14812−14818. [CrossRef] [PubMed] [Google Scholar]
  • Verslues P.E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J.-K., Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006, 45, 523−539. [CrossRef] [PubMed] [Google Scholar]
  • Verslues P.E, Sharma S., Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, 2010, 8, e0140. [Google Scholar]
  • Yamada M., Morishita H., Urano K., Shiozaki N., Kazuko Y.S., Shinozaki K., Yoshida Y., Effects of proline accumulation in petunias under drought stress. J Expt Bot, 2005, 56, 1975−1981. [CrossRef] [Google Scholar]
  • Zhang C.S., Lu Q., Verma D.P.S., Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem, 1995, 270, 20491−20496. [CrossRef] [PubMed] [Google Scholar]
  • Zhao M.G., Chen L., Zhang L.L., Zhang W.H., Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol, 2009, 151, 755 − 767. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.