Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 4, 2012
Journée Claude Bernard 2011
Page(s) 301 - 312
DOI https://doi.org/10.1051/jbio/2012029
Publié en ligne 19 février 2013
  • Bienert G.P., Moller A.L., Kristiansen K.A., Schulz A., Moller I.M., Schjoerring J.K., Jahn T.P., Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem, 2007, 282, 1183–1192. [CrossRef] [PubMed] [Google Scholar]
  • Chen I., ABA receptor diversity. PSI-Nature Structural Biology Knowledgebase, 2010, http:/sbkb.org/update/2010/11/full/sbkb.2010.49.html [Google Scholar]
  • Cho D., Shin D., Jeon B.W., Kwak J.M., ROS-mediated ABA signaling. J Plant Biol, 2009, 52, 102–113. [CrossRef] [Google Scholar]
  • Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R., Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61, 651–679. [CrossRef] [PubMed] [Google Scholar]
  • Dupeux F., Antoni R., Betz K., Santiago J., Gonzalez-Guzman M., Rodriguez L., Rubio S., Park S.-Y., Cutler S.R., Rodriguez P.L., Márquez J.A., Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiol, 2011a, 115, 106–116. [CrossRef] [Google Scholar]
  • Dupeux F., Santiago J., Betz K., Twycross J., Park S.-Y., Rodriguez L., Gonzales-Guzman M., Jensen M.R., Krasnogor N., Blackledge M., Holdsworth M., Cutler S.R., Rodriguez P.L., Márquez J.A., A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J, 2011b, 30, 4171–4184. [CrossRef] [PubMed] [Google Scholar]
  • Elmore J.M., Coaker G., The role of the plasma membrane H+-ATPase in plant–microbe interactions. Mol Plant, 2011, 4, 416–427. [CrossRef] [PubMed] [Google Scholar]
  • Flexas J., Ribas-Carbó M., Diaz-Espejo A., Galmés J., Medrano H., Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ, 2008, 31, 602–621. [CrossRef] [PubMed] [Google Scholar]
  • Fujii H., Verslues P.E., Zhu J.-K., Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plan Cell, 2007, 19, 485–494. [CrossRef] [Google Scholar]
  • Fujii H., Chinnusamy V., Rodrigues A., Rubio S., Antoni R., Par S.-Y., Cutler S.R., Sheen J., Rodriguez P.L., Zhu J.-K., In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462, 660–664. [CrossRef] [PubMed] [Google Scholar]
  • Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K., Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Nat Acad Sci USA, 2006, 103, 1988–1993. [CrossRef] [Google Scholar]
  • Hu H., Boisson-Dernier A., Israelsson-Nordstrom M., Bohmer M., Xue S., Ries A., Godoski J., Kuhn J.M., Schroeder J.I., Carbonic anhydrases are upstream regulators of CO2 controlled stomatal movements in guard cells. Nat Cell Biol, 2010, 12, 87–93. [CrossRef] [PubMed] [Google Scholar]
  • Inoue S.-i.,Takemiya A., Shimazaki K., Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol, 2011, 13, 587–593. [CrossRef] [Google Scholar]
  • Joshi-Saha A., Valon C., Leung J., A brand new start: Abscisic acid perception and transduction in the guard cell. Sci Signal, 2011 4, re4. [Google Scholar]
  • Kang J., Hwang J.-U., Lee M., Kim Y.-Y., Assmann S.M., Martinoia E., Lee Y., PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA, 2010, 107, 2355–2360. [CrossRef] [Google Scholar]
  • Kuromori T., Miyaji T., Yabuuchi H., Shimizu H., Sugimoto E., Kamiya A., Moriyama Y., Shinozaki K., ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA, 2010, 107, 2361–2366. [CrossRef] [Google Scholar]
  • Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A., Dangl J.L., Bloom R.E., Bodde S., Jones J.D., Schroeder. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J, 2003, 22, 2623–2633. [CrossRef] [PubMed] [Google Scholar]
  • Leonhardt N., Kwak J.M., Robert N., Waner D., Leonhardt G., Schroeder J.I., Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 2004, 16, 596–615. [CrossRef] [PubMed] [Google Scholar]
  • Leung J., Controlling hormone action by subversion and deception. Science, 2012, 335, 46–47. [CrossRef] [PubMed] [Google Scholar]
  • Leung J., Bouvier-Durand M., Morris P.-C., Guerrier D., Chefdor F., Giraudat J., Arabidopsis ABA response gene ABI1: Features of a calcium-modulated protein phosphatase. Science, 1994, 264, 1448–1452. [CrossRef] [PubMed] [Google Scholar]
  • Leung J., Merlot S., Giraudat J., The Arabidopsis ABSCISIC ACID-INSENSITIVE 2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 1997, 9, 759–771. [PubMed] [Google Scholar]
  • Levchenko V., Konrad K.R., Dietrich P., Roelfsema M.R.G., Hedrich R., Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Nat Acad Sci USA, 2005, 102, 4203–4208. [CrossRef] [Google Scholar]
  • Liu J., Elmore J.M., Fuglsang A.T., Palmgren M.G., Staskawicz B.J., Coaker R., RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol, 2009, 7, e10001139. [Google Scholar]
  • Melcher K., Ng L.-M., Zhou X.E., Soon F.-F., Xu Y., Suino-Powell K.M., Park S.-Y., Weiner J.J., Fujii H., Chinnusamy V., Kovach A., Li A.-B., Wang Y., Li J., Peterson F.C., Jensen D.R., Yong E.-L., Volkman B.F., Cutler S.R., Zhu J.-K., Xu H.E., A gate-latch-lock mechanisms for hormone signalling by abscisic acid receptors. Nature, 2009, 462, 602–608. [CrossRef] [PubMed] [Google Scholar]
  • Melcher K., Xu Y., Ng L.-M., Zhou X.E., Soon F.-F., Chinnusamy V., Suino-Powell K.M., Kovach A., Tham F.S., Cutler S.R., Li J., Yong E.-L., Zhu J.-K., Xu H.E., Identification and mechanism of ABA receptor antagonism. Nat Struct Mol Biol, 2010, 17, 1102–1108. [CrossRef] [PubMed] [Google Scholar]
  • Meyer K., Leube M.P., Grill E., A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 1994, 264, 1452–1455. [CrossRef] [PubMed] [Google Scholar]
  • Miyazono K.-i., Miyakawa T., Sawano Y., Kubota K., Kang H.-J., Asano A., Miyauchi Y., Takahashi M., Yoshida T., Kodaira K., Yamaguchi-Shinozaki K., Tanokura M., Structural basis of abscisic acid signalling. Nature, 2009, 462, 609–614. [CrossRef] [PubMed] [Google Scholar]
  • Mrinalini T., Latha Y.K., Raghavendra A.S., Das V.S.R., Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis. New Phytol, 1982, 91, 413–418. [CrossRef] [Google Scholar]
  • Mustilli A.-C., Merlot S., Vavasseur A., Fenzi F., Giraudat J., Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 14, 3089–3099. [CrossRef] [PubMed] [Google Scholar]
  • Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K., CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature, 2008, 452, 483–486. [CrossRef] [PubMed] [Google Scholar]
  • Nishimura N., Hitomi K., Arvai A.S., Rambo R.P., Hitomi C., Cutler S.R., Schroeder J.I., Getzoff E.D., Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science, 2009, 326, 1373–1379. [CrossRef] [PubMed] [Google Scholar]
  • Nishimura N., Sarkeshik A., Nito K., Park S.Y., Wang A., Carvalho P.C., Lee S., Caddell D.F., Cutler S.R., Chory J., Yates J.R., Schroeder J.I., PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J, 2010, 61, 290–299. [CrossRef] [PubMed] [Google Scholar]
  • Park S.-Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F., Alfred S.E., Bonetta D., Finkelstein R., Provart N.J., Desveaux D., Rodriguez P.L., McCourt P., Zhu J.K., Schroeder J.I., Volkman B.F., Cutler S.R., Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324, 1068–1071. [PubMed] [Google Scholar]
  • Radauer C., Lackner P., Breiteneder H., The Bet V 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol, 2008, 8, 286. [CrossRef] [PubMed] [Google Scholar]
  • Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E., ABA perception and signalling. Trends in Plant Sci, 2010, 15, 395–401. [Google Scholar]
  • Rodriguez P.L., Benning G., Grill E., ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett, 1998, 421, 185–190. [CrossRef] [PubMed] [Google Scholar]
  • Saez A., Apostolova N., Gonzalez-Guzman M., Gonzalez-Garcia M.P., Nicolas C., Lorenzo O., Rodriguez P.L., Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signaling. Plant J, 2004, 37, 354–369. [CrossRef] [PubMed] [Google Scholar]
  • Santiago J., Rodrigues A., Saez A., Rubio S., Antoni R., Dupeux F., Park S.-Y., Marquez J.A., Cutler S.R., Rodriguez P.L., Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J, 2009, 60, 575–588. [CrossRef] [PubMed] [Google Scholar]
  • Sato A., Sato Y., Fukao Y., Fujiwara M., Umezawa T., Shinozaki K., Hibi T., Taniguchi M., Miyake H., Goto D.B., Uozumi N., Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J, 2009, 424, 438–448. [CrossRef] [Google Scholar]
  • Sirichandra C., Gu D., Hu H.-C., Davanture M., Lee S., Djaoui M., Valot B., Zivy M., Leung J., Merlot S., Kwak J.M., Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett, 2009, 583, 2982–2986. [CrossRef] [PubMed] [Google Scholar]
  • Sirichandra C., Davanture M., Turk B.E., Zivy M., Valot B., Leung J., Merlot S., Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One, 2010, 5, e13935. [CrossRef] [PubMed] [Google Scholar]
  • Smalle J., Kurepa J., Yang P., Emborg T.J., Babiychuk E., Kushnir S., Vierstra R.D., The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell, 2003, 15, 965–980. [CrossRef] [PubMed] [Google Scholar]
  • Soon F.-F., Ng L.-M., Zhou X.E., West G.M., Kovach A., Tan H.M., Suino-Powell K.M., He Y., Xu Y., Chalmers M.J., Brunzelle J.S., Zhang H., Yang H., Jiang H., Li J., Yong E.-L., Cutler S., Zhu J.-K., Griffin P.R., Melcher K., Xu H.E., Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science, 2011, 335, 85–88. [CrossRef] [PubMed] [Google Scholar]
  • Szostkiewicz I., Richter K., Kepka M., Demmel S., Ma Y., Korte F.F., Assaad A., Christmann E., Grill E., Closely-related receptor complexes differ in their ABA selectivity an sensitivity. Plant J, 2010, 61, 25–35. [CrossRef] [PubMed] [Google Scholar]
  • Tardieu F., Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Sci, 2003, 8, 9–14. [CrossRef] [Google Scholar]
  • Terashima I., Ono K., Effects of HgCl2 on CO2 dependence of leaf photosynthesis: Evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol, 2002, 43, 70–78. [CrossRef] [PubMed] [Google Scholar]
  • The News Staff. Breakthrough of the year.The Runners-Up. Science, 2009, 326, 1600–1607. [Google Scholar]
  • Uehlein N., Lovisolo C., Siefritz F., Kaldenfoff R., The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 2003, 425, 734–737. [CrossRef] [PubMed] [Google Scholar]
  • Umezawa T., Sugiyama N., Mizoguchi M., Hayashi S., Myouga F., Yamaguchi-Shinozaki K., Ishihama Y., Hirayama T., Shinozaki K., Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106, 17588–17593. [CrossRef] [Google Scholar]
  • Vahisalu T., Kollist H., Wang Y.-F., Nishimura N., Chan W.-Y., Valero G., Lamminmäki A., Brosche M., Moldau H., Desikan R., Schroeder J.I., Kangasjärvi J., SLAC1 is required for plant guard cells S-type anion channel function in stomatal signalling. Nature, 2008, 452, 487–491. [CrossRef] [PubMed] [Google Scholar]
  • Vahisalu T., Puzõrjova I., Brosché M., Valk E., Lepiku M., Moldau H., Pechter P., Wang Y.-S., Lindgren O., Salojärvi J., Loog M., Kangasjärvi J., Kollist H., Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J, 2010, 62, 442–453. [CrossRef] [PubMed] [Google Scholar]
  • Vlad F., Turk B.E., Peynot P., Leung J., Merlot S., A versatile strategy to define phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J, 2008, 55, 104–117. [CrossRef] [PubMed] [Google Scholar]
  • Vlad F., Rubio S., Rodriguez A., Sirichandra C., Belin C., Robert N., Leung J., Rodriguez P.L., Laurière C., Merlot S., Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell, 2009, 21, 3170–3184. [CrossRef] [PubMed] [Google Scholar]
  • Wasilewska A., Vlad F., Sirichandra C., Redko Y., Jammes F., Valon C., Frei dit Frey N., Leung J., An update on abscisic acid signaling in plants and more. Mol Plant, 2008, 1, 198–217. [CrossRef] [PubMed] [Google Scholar]
  • Xie X., Wang Y., Williamson L., Holroyd G.H., Tagliavia C., Murchie E., Theobals J., Knight M.R., Davies W.J., Leyser H.M.O., Hetherington A.M., The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Curr Biol, 2006, 16, 882–887. [CrossRef] [PubMed] [Google Scholar]
  • Xue S., Hu H., Ries A., Merilo E., Kollist H., Schroeder J.I., Channel functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J, 2011, 30, 1645–1658. [CrossRef] [PubMed] [Google Scholar]
  • Yin P., Fan H., Hao Q., Yuan X., Wu D., Pang Y., Yan C., Li W., Wang J., Yan N., Structural insights into mechanism of abscisic acid signaling by PYL proteins. Nat Struct Biol, 2009, 16, 1230–1236. [CrossRef] [Google Scholar]
  • Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K., AREB1, AREB2, and AREB3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J, 2010, 61, 672–685. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.