Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 4, 2012
Journée Claude Bernard 2011
Page(s) 313 - 322
DOI https://doi.org/10.1051/jbio/2012032
Publié en ligne 19 février 2013
  • Aung K., Lin S.I., Wu C.C., Huang Y.T., Su C.L., Chiou T.J., pho2, a phosphate over accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol, 2006, 141, 1000–1011. [CrossRef] [PubMed] [Google Scholar]
  • Axtell M.J., Bowman J.L., Evolution of plant microRNAs and their targets. Trends Plant Sci, 2008, 13, 343–349. [CrossRef] [PubMed] [Google Scholar]
  • Bardou F., Merchan F., Ariel F., Crespi M., Dual RNAs in plants. Biochimie, 2011, 11, 1950–1954. [CrossRef] [Google Scholar]
  • Bari R., Datt Pant B., Stitt M., Scheible W.R., PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141, 988–999. [CrossRef] [PubMed] [Google Scholar]
  • Ben Amor B., Wirth S., Merchan F., Laporte P., d’Aubenton-Carafa Y., Hirsch J., Maizel A., Mallory A., Lucas A., Deragon J.M., Vaucheret H., Thermes C., Crespi M., Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res, 2009, 19, 57–69. [CrossRef] [PubMed] [Google Scholar]
  • Borsani O., Zhu J., Verslues P.E., Sunkar R., Zhu J.K., Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123, 1279–1291. [CrossRef] [PubMed] [Google Scholar]
  • Burleigh S.H., Harrison M.J., The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol, 1999, 119, 241–248. [CrossRef] [PubMed] [Google Scholar]
  • Bustos R., Castrillo G., Linhares F., Puga M.I., Rubio V., Pérez-Pérez J., Solano R., Leyva A., Paz-Ares J., A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PloS Genetics, 2010, 6, e1001102. [CrossRef] [PubMed] [Google Scholar]
  • Clark M.B., Mattick J.S., Long noncoding RNAs. Semin Cell Dev Biol, 2011, 22, 366–376. [CrossRef] [PubMed] [Google Scholar]
  • Franco-Zorrilla J.M., Valli A., Todesco M., Mateos I., Puga M.I., Rubio-Somoza I., Leyva A., Weigel D., García J.A., Paz-Ares J., Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39, 1033–1037. [CrossRef] [PubMed] [Google Scholar]
  • Fujii H., Chiou T.J., Lin S.I., Aung K., Zhu J.K., A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 2005, 15, 2038–2043. [CrossRef] [PubMed] [Google Scholar]
  • German M.A., Pillay M., Jeong D.H., Hetawal A., Luo S., Janardhanan P., Kannan V., Rymarquis L.A, Nobuta K., German R., De Paoli E., Lu C., Schroth G., Meyers B.C., Green P.J., Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 2008, 26, 941–946. [CrossRef] [PubMed] [Google Scholar]
  • Heo J.B., Sung S., Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 2010, 331, 76–79. [CrossRef] [PubMed] [Google Scholar]
  • Hirsch J., Lefort V., Vankersschaver M., Boualem A., Lucas A., Thermes C., d’Aubenton-Carafa Y., Crespi M., Characterization of 43 non-protein-coding mRNA genes in Arabidopsis, including the MIR162a-derived transcripts. Plant Physiol, 2006, 140, 1192–1204. [CrossRef] [PubMed] [Google Scholar]
  • Huang L., Jones A.M., Searle I., Patel K., Vogler H., Hubner N.C., Baulcombe D.C., An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat Struct Mol Biol, 2009, 16, 91–93. [CrossRef] [PubMed] [Google Scholar]
  • Jones-Rhoades M.W., Bartel D.P., Bartel B., MicroRNAs and their regulatory role in plants. Annu Rev Plant Biol, 2006, 57, 19–53. [CrossRef] [PubMed] [Google Scholar]
  • Katiyar-Agarwal S., Morgan R., Dahlbeck D., Borsani O., Villegas A.Jr., Zhu J.K., Staskawicz B.J., Jin H., A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA, 2006, 103, 18002–18007. [CrossRef] [Google Scholar]
  • Kim Y.J., Zheng B., Yu Y., Won S.Y., Mo B., Chen X., The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J, 2011, 30, 814–822. [CrossRef] [PubMed] [Google Scholar]
  • Khraiwesh B., Zhu J.K., Zhu J., Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta, 2012, 1819, 137–148. [CrossRef] [PubMed] [Google Scholar]
  • Laubinger S., Sachsenberg T., Zeller G., Busch W., Lohmann J.U., Rätsch G., Weigel D., Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2008, 105, 8795–8800. [CrossRef] [Google Scholar]
  • Li J., Yang Z., Yu B., Liu J., Chen X., Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol, 2005, 15, 1501–1507. [CrossRef] [PubMed] [Google Scholar]
  • Li Y.F., Zheng Y., Addo-Quaye C., Zhang L., Saini A., Jagadeeswaran G., Axtell M.J., Zhang W., Sunkar R., Transcriptome-wide identification of microRNA targets in rice. Plant J, 2010, 62, 742–759. [CrossRef] [PubMed] [Google Scholar]
  • Lin S.I., Chiang S.F., Lin W.Y., Chen J.W., Tseng C.Y., Wu P.C., Chiou T.J., Regulatory network of micro-RNA399 and PHO2 by systemic signaling. Plant Physiol, 2008, 147, 732–746. [CrossRef] [PubMed] [Google Scholar]
  • Liu C., Muchhal U.S., Uthappa M., Kononowicz A.K., Raghothama K.G., Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol, 1998, 116, 91–99. [CrossRef] [PubMed] [Google Scholar]
  • Liu J., Jung C., Xu J., Wang H., Deng S., Bernad L., Arenas-Huertero C., Chua N.H., Genome-Wide Analysis Uncovers Regulation of Long Intergenic Noncoding RNAs in Arabidopsis. Plant Cell, 2012, disponible en ligne. [Google Scholar]
  • Liu Q., Shi L., Fang Y., Dicing bodies. Plant Physiol, 2012, 158, 61–66. [CrossRef] [PubMed] [Google Scholar]
  • Lu C., Fedoroff N., A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell, 2000, 12, 2351–2366. [PubMed] [Google Scholar]
  • Magistri M., Faghihi M.A., St Laurent G., Wahlestedt C., Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet, 2012, 28, 399–396. [CrossRef] [Google Scholar]
  • Martín A.C., del Pozo J.C., Iglesias J., Rubio V., Solano R., de La Peña A., Leyva A., Paz-Ares J., Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J, 2000, 24, 559–567. [CrossRef] [PubMed] [Google Scholar]
  • Mattick J.S., Rocking the foundations of molecular genetics. Proc Natl Acad Sci USA, 2012, 109, 16400–16401. [CrossRef] [Google Scholar]
  • Pant B.D., Buhtz A., Kehr J., Scheible W.R., Micro-RNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J, 2008, 53, 731–738. [CrossRef] [PubMed] [Google Scholar]
  • Sunkar R., Kapoor A., Zhu J.K., Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell, 2006, 18, 2051–2065. [CrossRef] [PubMed] [Google Scholar]
  • Sunkar R., Li Y.F., Jagadeeswaran G., Functions of microRNAs in plant stress responses. Trends Plant Sci, 2012, 17, 196–203. [CrossRef] [PubMed] [Google Scholar]
  • Swiezewski S., Liu F., Magusin A., Dean C., Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature, 2009, 462, 799–802. [CrossRef] [PubMed] [Google Scholar]
  • Voinnet O., Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136, 669–687. [CrossRef] [PubMed] [Google Scholar]
  • Wierzbicki A.T., The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol, 2012, 5, 517–522. [CrossRef] [Google Scholar]
  • Xie Z., Qi X., Diverse small RNA-directed silencing pathways in plants. Biochim Biophys Acta, 2008, 1779, 720–724. [CrossRef] [PubMed] [Google Scholar]
  • Yamasaki H., Abdel-Ghany S.E., Cohu C.M., Kobayashi Y., Shikanai T., Pilon M., Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem, 2007, 282, 16369–16378. [CrossRef] [PubMed] [Google Scholar]
  • Zhan X., Wang B., Li H., Liu R., Kalia R.K., Zhu J.K., Chinnusamy V., Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci USA, 2012, 109, 18198–1820. [CrossRef] [Google Scholar]
  • Zhang X., Xia J., Lii E., Barrera-Figueroa B.E., Zhou X., Gao S., Lu L., Niu D., Chen Z., Leung C., Wong T., Zhang H., Guo J., Li Y., Liu R., Liang W., Zhu J.K., Zhang W., Jin H., Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol, 2012, 13, R20. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.