Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 207, Numéro 4, 2013
Page(s) 291 - 307
DOI https://doi.org/10.1051/jbio/2013019
Publié en ligne 5 mars 2014
  • Anghileri E., Marconi S., Pignatelli A., Cifelli P., Galié M., Sbarbati A., Krampera M., Belluzzi O., Bonetti B., Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev, 2008, 17, 909–916. [CrossRef] [PubMed] [Google Scholar]
  • Azioune A., Storch M., Bornens M., Théry M., Piel M., Simple and rapid process for single cell micro-patterning. Lab Chip, 2009, 9, 1640. [CrossRef] [PubMed] [Google Scholar]
  • Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V., Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv, 2011, 29, 739–767. [CrossRef] [PubMed] [Google Scholar]
  • Bashyam M.D., Understanding cancer metastasis: an urgent need for using differential gene expression analysis. Cancer, 2002, 94, 1821–1829. [CrossRef] [PubMed] [Google Scholar]
  • Béduer A., Vaysse L., Flahaut E., Seichepine F., Loubinoux I., Vieu C., Multi-scale engineering for neuronal cell growth and differentiation. Microelectron Eng, 2011, 88, 1668–1671. [CrossRef] [Google Scholar]
  • Béduer A., Seichepine F., Flahaut E., Loubinoux I., Vaysse L., Vieu C., Elucidation of the role of carbon nanotube patterns on the development of cultured neuronal cells. Langmuir, 2012a, 28, 17363–17371. [CrossRef] [PubMed] [Google Scholar]
  • Béduer A., Vieu C., Arnauduc F., Sol J.-C., Loubinoux I., Vaysse L., Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials, 2012b, 33, 504–514. [CrossRef] [PubMed] [Google Scholar]
  • Bettinger C.J., Langer R., Borenstein J.T., Engineering Substrate Micro- and Nanotopography to Control Cell Function. Angew Chem Int Ed Engl, 2009, 48, 5406–5415. [Google Scholar]
  • Bliss T.M., Andres R.H., Steinberg G.K., Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis, 2010, 37, 275–283. [CrossRef] [PubMed] [Google Scholar]
  • Burns T.C., Verfaillie C.M., Low W.C., Stem cells for ischemic brain injury: a critical review. J Comp Neurol, 2009, 515, 125–144. [CrossRef] [PubMed] [Google Scholar]
  • Casteilla L., Adipose-derived stromal cells: Their identity and uses in clinical trials, an update. World J Stem Cells, 2011, 3, 25. [CrossRef] [PubMed] [Google Scholar]
  • Charest J.L., King W.P., Engineering Biomaterial Interfaces Through Micro and Nano-Patterning. In Hesketh P.J. (Ed.), BioNanoFluidic MEMS, MEMS Reference Shelf. 2008, Springer US, pp. 251–277. [Google Scholar]
  • Chen C.S., Mrksich M., Huang S., Whitesides G.M., Ingber D.E., Geometric Control of Cell Life and Death. Science, 1997, 276, 1425–1428. [CrossRef] [PubMed] [Google Scholar]
  • Chen H., Song W., Zhou F., Wu Z., Huang H., Zhang J., Lin Q., Yang B., The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloids Surf B Biointerfaces, 2009, 71, 275–281. [CrossRef] [PubMed] [Google Scholar]
  • Clark P., Connolly P., Curtis A.S., Dow J.A., Wilkinson C.D., Topographical control of cell behaviour. I. Simple step cues. Dev Camb Engl, 1987, 99, 439–448. [Google Scholar]
  • Clark P., Connolly P., Curtis A.S., Dow J.A., Wilkinson C.D., Topographical control of cell behaviour: II. Multiple grooved substrata. Dev Camb Engl, 1990, 108, 635–644. [Google Scholar]
  • Craighead H., James C., Turner A.M., Chemical and topographical patterning for directed cell attachment. Curr Opin Solid State Mater Sci, 2001, 5, 177–184. [CrossRef] [Google Scholar]
  • Curtis A.S., Varde M., Control of cell behavior: Topological factors. J Natl Canc Inst, 1964, 33, 15–26. [Google Scholar]
  • Curtis A.S., Wilkinson C., Topographical control of cells. Biomaterials, 1997, 18, 1573–1583. [CrossRef] [PubMed] [Google Scholar]
  • Dalby M.J., Riehle M.O., Yarwood S.J., Wilkinson C.D.W., Curtis A.S.G., Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res, 2003, 284, 274–282. [CrossRef] [PubMed] [Google Scholar]
  • Dalby M.J., Biggs M.J.P., Gadegaard N., Kalna G., Wilkinson C.D.W., Curtis A.S.G., Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J Cell Biochem, 2006, 100, 326–338. [CrossRef] [Google Scholar]
  • Dalton B.A., Walboomers X.F., Dziegielewski M., Evans M.D., Taylor S., Jansen J.A., Steele J.G., Modulation of epithelial tissue and cell migration by microgrooves. J Biomed Mater Res, 2001, 56, 195–207. [CrossRef] [PubMed] [Google Scholar]
  • Dickinson L.E., Kusuma S., Gerecht S., Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol Biosci, 2011, 11, 36–49. [CrossRef] [PubMed] [Google Scholar]
  • Discher D.E., Janmey P., Wang Y.-L., Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 2005, 310, 1139–1143. [CrossRef] [PubMed] [Google Scholar]
  • Dunn G.A., Heath J.P., A new hypothesis of contact guidance in tissue cells. Exp Cell Res, 1976, 101, 1–14. [CrossRef] [PubMed] [Google Scholar]
  • FitzGerald J.J., Lago N., Benmerah S., Serra J., Watling C.P., Cameron R.E., Tarte E., Lacour S.P., McMahon S.B., Fawcett J.W., A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J Neural Eng, 2012, 9, 016010. [CrossRef] [PubMed] [Google Scholar]
  • Franze K., Gerdelmann J., Weick M., Betz T., Pawlizak S., Lakadamyali M., Bayer J., Rillich K., Gögler, M., Lu Y.-B., Reichenbach A., Janmey P., Käs J., Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys J, 2009, 97, 1883–1890. [CrossRef] [PubMed] [Google Scholar]
  • Freund P., Schmidlin E., Wannier T., Bloch J., Mir A., Schwab M.E., Rouiller E.M., Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates–re-examination and extension of behavioral data. Eur J Neurosci, 2009, 29, 983–996. [CrossRef] [PubMed] [Google Scholar]
  • Garbayo E. Delcroix J.-R., Schiller P.C., Montero-Menei C.N., Advances in the Combined Use of Adult Cell Therapy and Scaffolds for Brain Tissue Engineering. In Eberli D. (Ed.), Tissue Engineering for Tissue and Organ Regeneration. 2008. [Google Scholar]
  • Goodman C.S., Mechanisms and Molecules that Control Growth Cone Guidance. Annu Rev Neurosci, 1996, 19, 341–377. [CrossRef] [PubMed] [Google Scholar]
  • Harrison R.G., The cultivation of tissues in extraneous media as a method of morpho-genetic study. Anat Rec, 1912, 6, 181–193. [CrossRef] [Google Scholar]
  • Hou S., Xu Q., Tian W., Cui F., Cai Q., Ma J., Lee I.-S., The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Methods, 2005, 148, 60–70. [CrossRef] [PubMed] [Google Scholar]
  • Huang Z.-M., Zhang Y.-Z., Kotaki M., Ramakrishna S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol, 2003, 63, 2223–2253. [Google Scholar]
  • Ingber D.E., Tensegrity: The Architectural Basis of Cellular Mechanotransduction. Annu Rev Physiol, 1997, 59, 575–599. [CrossRef] [PubMed] [Google Scholar]
  • Jain R.A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21, 2475–2490. [CrossRef] [PubMed] [Google Scholar]
  • James C.D., Davis R., Meyer M., Turner A., Turner S., Withers G., Kam L., Banker G., Craighead H., Isaacson M., Turner J., Shain, W., Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans Biomed Eng, 2000, 47, 17–21. [CrossRef] [PubMed] [Google Scholar]
  • Jang S., Cho H.-H., Cho Y.-B., Park J.-S., Jeong H.-S., Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol, 2010, 11, 25. [CrossRef] [PubMed] [Google Scholar]
  • Jiang X., Bruzewicz D.A., Wong A.P., Piel M., Whitesides G.M., Directing Cell Migration with Asymmetric Micropatterns. Proc Natl Acad Sci USA, 2005, 102, 975–978. [CrossRef] [Google Scholar]
  • Kenley R.A., Lee M.O., Mahoney T.R., Sanders L.M., Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules, 1987, 20, 2398–2403. [CrossRef] [Google Scholar]
  • Khademhosseini A., Langer R., Borenstein J., Vacanti J.P., Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA, 2006, 103, 2480–2487. [CrossRef] [Google Scholar]
  • Kim G.H., Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomed Mater, 2008, 3, 025010. [CrossRef] [PubMed] [Google Scholar]
  • Kleinman H.K., McGarvey M.L., Hassell J.R., Star V.L., Cannon F.B., Laurie G.W., Martin G.R., Basement membrane complexes with biological activity. Biochemistry (Mosc.) 1986, 25, 312–318. [CrossRef] [Google Scholar]
  • Koroleva A., Gill A.A., Ortega I., Haycock J.W., Schlie S., Gittard S.D., Chichkov B.N., Claeyssens F., Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication, 2012, 4, 025005. [CrossRef] [PubMed] [Google Scholar]
  • Kumar G., Chen B., Co C.C., Ho C.-C., Differential migration and proliferation of geometrical ensembles of cell clusters. Exp Cell Res, 2011, 317, 1340–1352. [CrossRef] [PubMed] [Google Scholar]
  • Lai H.-Y., Lin S.-H., Cho C.-W., Chao W.-H., Liao C.-H., Tsang S., Chen Y.-F., Lin S.-Y., Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. J Neurosci Methods, 2009, 182, 6–16. [CrossRef] [PubMed] [Google Scholar]
  • Li S., Bhatia S., Hu Y.L., Shiu Y.T., Li Y.S., Usami S., Chien S., Effects of morphological patterning on endothelial cell migration. Biorheology, 2001, 38, 101−108. [PubMed] [Google Scholar]
  • Li N., Folch A., Integration of topographical and biochemical cues by axons during growth on microfabricated 3-D substrates. Exp Cell Res, 2005, 311, 307–316. [CrossRef] [PubMed] [Google Scholar]
  • Lim J.Y., Donahue H.J., Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng, 2007, 13, 1879–1891. [CrossRef] [PubMed] [Google Scholar]
  • Mahoney M.J., Chen R.R., Tan J., Mark Saltzman, W., The influence of microchannels on neurite growth and architecture. Biomaterials, 2005, 26, 771–778. [CrossRef] [PubMed] [Google Scholar]
  • Mai J., Fok L., Gao H., Zhang X., Poo M.-M., Axon Initiation and Growth Cone Turning on Bound Protein Gradients. J Neurosci, 2009, 29, 7450–7458. [CrossRef] [PubMed] [Google Scholar]
  • Marino P., Norreel J.-C., Schachner M., Rougon G., Amoureux M.-C., A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury. Exp Neurol, 2009, 219, 163–174. [CrossRef] [PubMed] [Google Scholar]
  • McKenzie J.L., Waid M.C., Shi R., Webster T.J., Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials, 2004, 25, 1309–1317. [CrossRef] [PubMed] [Google Scholar]
  • McNamara L.E., Burchmore R., Riehle M.O., Herzyk P., Biggs M.J.P., Wilkinson C.D.W., Curtis A.S.G., Dalby M.J., The role of microtopography in cellular mechanotransduction. Biomaterials, 2012, 33, 2835–2847. [CrossRef] [PubMed] [Google Scholar]
  • Melissinaki V., Gill A.A., Ortega I., Vamvakaki M., Ranella A., Haycock J.W., Fotakis C., Farsari M., Claeyssens F., Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication, 2011, 3, 045005. [CrossRef] [PubMed] [Google Scholar]
  • Miller C., Jeftinija S., Mallapragada S., Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates. Tissue Eng, 2002, 8, 367–378. [CrossRef] [PubMed] [Google Scholar]
  • Minc N., Piel M., Predicting division plane position and orientation. Trends Cell Biol, 2012, 22, 193–200. [CrossRef] [PubMed] [Google Scholar]
  • Ming G., Wong S.T., Henley J., Yuan X., Song H., Spitzer N.C., Poo M., Adaptation in the chemotactic guidance of nerve growth cones. Nature, 2002, 417, 411–418. [CrossRef] [PubMed] [Google Scholar]
  • Moore S.W., Biais N., Sheetz M.P., Traction on Immobilized Netrin-1 Is Sufficient to Reorient Axons. Science, 2009, 325, 166–166. [CrossRef] [PubMed] [Google Scholar]
  • Muthu M., Nanoparticles based on PLGA and its co-polymer: An overview. Asian J Pharm, 2009, 3, 266. [CrossRef] [Google Scholar]
  • Nagata I., Kawana A., Nakatsuji N., Perpendicular contact guidance of CNS neuroblasts on artificial microstructures. Dev Camb Engl, 1993, 117, 401–408. [Google Scholar]
  • Okano H., Stem cell biology of the central nervous system. J Neurosci Res, 2002, 69, 698–707. [CrossRef] [PubMed] [Google Scholar]
  • Pan Z., Yan C., Peng R., Zhao Y., He Y., Ding J., Control of cell nucleus shapes via micropillar patterns. Biomaterials, 2012, 33, 1730–1735. [CrossRef] [PubMed] [Google Scholar]
  • Parker K.K., Brock A.L., Brangwynne C., Mannix R.J., Wang N., Ostuni E., Geisse N.A., Adams J.C., Whitesides G.M., Ingber D.E., Directional Control of Lamellipodia Extension by Constraining Cell Shape and Orienting Cell Tractional Forces. FASEB J, 2002, 16, 1195–1204. [CrossRef] [PubMed] [Google Scholar]
  • Pham Q.P., Sharma U., Mikos A.G., Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng, 2006, 12, 1197–1211. [Google Scholar]
  • Purves D., Augustine G.J., Fitzpatrick D., Katz L.C., Lamantia S., McNamara J.O., Williams M., Neuroscience, 2008, De Boeck, Sinauer, Sunderland, Mass. [Google Scholar]
  • Qu C., Xiong Y., Mahmood A., Kaplan D.L., Goussev A., Ning R., Chopp M., Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds. J Neurosurg, 2009, 111, 658–665. [CrossRef] [PubMed] [Google Scholar]
  • Quist A.P., Pavlovic E., Oscarsson S., Recent advances in microcontact printing. Anal Bioanal Chem, 2005, 381, 591–600. [CrossRef] [PubMed] [Google Scholar]
  • Rajnicek A., Britland S., McCaig C., Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci, 1997, 110 , 2905–2913. [PubMed] [Google Scholar]
  • Recknor J.B.J.B., Recknor J.C.J.C., Sakaguchi D.S.D.S., Mallapragada S.K.S.K., Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials, 2004, 25, 2753–2767. [CrossRef] [PubMed] [Google Scholar]
  • Reekmans K., Praet J., Daans J., Reumers V., Pauwels P., Van der Linden A., Berneman Z., Ponsaerts P., Current Challenges for the Advancement of Neural Stem Cell Biology and Transplantation Research. Stem Cell Rev Reports, 2012, 8, 262–278. [CrossRef] [Google Scholar]
  • Riveline D., Zamir E., Balaban N.Q., Schwarz U.S., Ishizaki T., Narumiya S., Kam Z., Geiger B., Bershadsky A.D., Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol, 2001, 153, 1175–1186. [CrossRef] [PubMed] [Google Scholar]
  • Ross A.M., Jiang Z., Bastmeyer M., Lahann J., Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity. Small, 2012, 8, 336–355. [CrossRef] [PubMed] [Google Scholar]
  • Seo C.H., Furukawa K., Montagne K., Jeong H., Ushida T., The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials, 2011, 32, 9568–9575. [CrossRef] [PubMed] [Google Scholar]
  • Seymour A.B., Andrews E.M., Tsai S.-Y., Markus T.M., Bollnow M.R., Brenneman M.M., O’Brien T.E., Castro A.J., Schwab M.E., Kartje G.L., Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats. J Cereb Blood Flow Metab, 2005, 25, 1366–1375. [CrossRef] [PubMed] [Google Scholar]
  • Suhonen J.O., Peterson D.A., Ray J., Gage F.H., Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature, 1996, 383, 624–627. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi K., Yamanaka S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126, 663–676. [CrossRef] [PubMed] [Google Scholar]
  • Tate C.C., Shear D.A., Tate M.C., Archer D.R., Stein D.G., LaPlaca M.C., Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med, 2009, 3, 208–217. [CrossRef] [PubMed] [Google Scholar]
  • Thomson R., Wake M., Yaszemski M., Mikos A., Biodegradable polymer scaffolds to regenerate organs. In Peppas N., Langer R. (Eds.), Biopolymers II, Advances in Polymer Science. 1995, Springer, Berlin/Heidelberg, pp. 245–274. [Google Scholar]
  • Tzvetkova-Chevolleau T., Stéphanou A., Fuard D., Ohayon J., Schiavone P., Tracqui P., The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials, 2008, 29, 1541–1551. [CrossRef] [PubMed] [Google Scholar]
  • Walsh J.F., Manwaring M.E., Tresco P.A., Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates. Tissue Eng, 2005, 11, 1085–1094. [CrossRef] [PubMed] [Google Scholar]
  • Wang G., Ao Q., Gong K., Wang A., Zheng L., Gong Y., Zhang X., The effect of topology of chitosan biomaterials on the differentiation and proliferation of neural stem cells. Acta Biomater, 2010, 6, 3630–3639. [CrossRef] [PubMed] [Google Scholar]
  • Weibel D.B., DiLuzio W.R., Whitesides G.M., Microfabrication meets microbiology. Nat Rev Microbiol, 2007, 5, 209–218. [CrossRef] [PubMed] [Google Scholar]
  • Weiss P., The Problem of Specificity in Growth and Development. Yale J Biol Med, 1947, 19, 235–278. [PubMed] [Google Scholar]
  • Whitesides G.M., Ostuni E., Takayama S., Jiang X., Ingber D.E., Soft Lithography in Biology and Bioche-mistry. Annu Rev Biomed Eng, 2001, 3, 335–373. [Google Scholar]
  • Wong D.Y., Hollister S.J., Krebsbach P.H., Nosrat C., Poly(epsilon-caprolactone) and poly (L-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury. Tissue Eng, 2007, 13, 2515–2523. [CrossRef] [PubMed] [Google Scholar]
  • Xia Y., Whitesides G.M., Soft Lithography. Angew Chem Int Ed, 1998, 37, 550–575. [Google Scholar]
  • Zeck G., Fromherz P., Noninvasive Neuroelectronic Interfacing with Synaptically Connected Snail Neurons Immobilized on a Semiconductor Chip. Proc Natl Acad Sci USA, 2001, 98, 10457–10462. [CrossRef] [Google Scholar]
  • Zhong J., Chan A., Morad L., Kornblum H.I., Fan G., Carmichael S.T., Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil Neural Repair, 2010, 24, 636–644. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.