Accès gratuit
Biologie Aujourd'hui
Volume 208, Numéro 2, 2014
Page(s) 177 - 190
Section Impact physiopathologique et mode d’action des nanoparticules
Publié en ligne 8 septembre 2014
  • Albanese A., Walkey C.D., Olsen J.B., Guo H., Emili A., Chan W.C.W., Secreted Biomolecules Alter the Biological Identity and Cellular Interactions of Nanoparticles. ACS Nano, 2014, 8, 5515–5526. [CrossRef] [PubMed] [Google Scholar]
  • Arbab A.S., Wilson L.B., Ashari P., Jordan E.K., Lewis B.K., Frank J.A., A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed, 2005, 18, 383–389. [CrossRef] [PubMed] [Google Scholar]
  • Beaumont C., Delaby C., Recycling iron in normal and pathological states. Semin Hematol, 2009, 46, 328–338. [CrossRef] [PubMed] [Google Scholar]
  • Bertoli F., Davies G.-L., Monopoli M.P., Moloney M., Gun’ko Y.K., Salvati A., Dawson K.A., Magnetic Nanoparticles to Recover Cellular Organelles and Study the Time Resolved Nanoparticle-Cell Interactome throughout Uptake. Small, 2014, Apr 16. doi: 10.1002/smll.201303841 [Google Scholar]
  • Bourrinet P., Bengele H.H., Bonnemain B., Dencausse A., Idee J.M., Jacobs P.M., Lewis J.M., Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol, 2006, 41, 313–324. [CrossRef] [PubMed] [Google Scholar]
  • Casals E., Pfaller T., Duschl A., Oostingh G.J., Puntes V., Time Evolution of the Nanoparticle Protein Corona. ACS Nano, 2010, 4, 3623–3632. [CrossRef] [PubMed] [Google Scholar]
  • Cedervall T., Lynch I., Lindman S., Berggard T., Thulin E., Nilsson H., Dawson K.A., Linse S., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA, 2007, 104, 2050–2055. [CrossRef] [Google Scholar]
  • Chaudeurge A., Wilhelm C., Chen-Tournoux A., Farahmand P. V.B., Autret G., Larghéro J., Desnos T., Hagège A., Gazeau F., Clément O., Menasché P., Can magnetic targeting of magnetically-labeled endothelial progenitor circulating cells optimize intramyocardial cell engraftment? Cell Transplant, 2012, 21, 679–691. [CrossRef] [PubMed] [Google Scholar]
  • Cheng K., Li T.S., Malliaras K., Davis D.R., Zhang Y., Marban E., Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res, 2010, 106, 1570–1581. [CrossRef] [PubMed] [Google Scholar]
  • Chou L.Y.T., Zagorovsky K., Chan W.C.W., DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat Nano, 2014, 9, 148–155. [CrossRef] [Google Scholar]
  • Di Corato R., Espinosa A., Lartigue L., Tharaud M., Chat S., Pellegrino T., Ménager C., Gazeau F., Wilhelm C., Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials, 2014, 35, 6400–6411. [CrossRef] [PubMed] [Google Scholar]
  • Di Corato R., Gazeau F., Le Visage C., Fayol D., Levitz P., Lux F., Letourneur D., Luciani N., Tillement O., Wilhelm C., High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs. ACS Nano, 2013, 7, 7500–7512. [CrossRef] [PubMed] [Google Scholar]
  • Dobrovolskaia M.A., Aggarwal P., Hall J.B., McNeil S.E., Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm, 2008, 5, 487–495. [CrossRef] [PubMed] [Google Scholar]
  • Fadeel B., Feliu N., Vogt C., Abdelmonem A.M., Parak W.J., Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2013, 5, 111–129. [CrossRef] [PubMed] [Google Scholar]
  • Fayol D., Luciani N., Lartigue L., Gazeau F., Wilhelm C., Managing Magnetic Nanoparticle Aggregation and Cellular Uptake: a Precondition for Efficient Stem-Cell Differentiation and MRI Tracking. Adv Healthc Mater, 2012, 2, 313–325. [CrossRef] [PubMed] [Google Scholar]
  • Fayol D., Frasca G., Le Visage C., Gazeau F., Luciani N., Wilhelm C., Use of Magnetic Forces to Promote Stem Cell Aggregation During Differentiation, and Cartilage Tissue Modeling. Adv Mater, 2013a, 25, 2611–2616. [CrossRef] [PubMed] [Google Scholar]
  • Fayol D., Le Visage C., Ino J., Gazeau F., Letourneur D., Wilhelm C., Design of Biomimetic Vascular Grafts With Magnetic Endothelial Patterning. Cell Transplant, 2013b, 22, 2105–2118. [Google Scholar]
  • Hubbs A.F., Mercer R.R., Benkovic S.A., Harkema J., Sriram K., Schwegler-Berry D., Goravanahally M.P., Nurkiewicz T.R., Castranova V., Sargent L.M., Nanotoxicology—A Pathologist’s Perspective. Toxicol Pathol, 2011, 39, 301–324. [CrossRef] [PubMed] [Google Scholar]
  • Javed Y., Lartigue L., Hugounenq P., Vuong Q.L., Gossuin Y., Bazzi R., Wilhelm C., Ricolleau C., Gazeau F., Alloyeau D., Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating. Small, 2014, May 3. Doi: 10.1002/smll.201400281. [Google Scholar]
  • Kolosnjaj-Tabi J., Wilhelm C., Clément O., Gazeau F., Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnol, 2013, 11, S7. [Google Scholar]
  • Kolosnjaj-Tabi J., Di Corato R., Lartigue L., Marangon I., Guardia P., Silva A.K.A., Luciani N., Clément O., Flaud P., Singh J.V., Decuzzi P., Pellegrino T., Wilhelm C., Gazeau F., Heat-Generating Iron Oxide Nanocubes: Subtle “Destructurators” of the Tumoral Microenvironment. ACS Nano, 2014, 8, 4268–4283. [CrossRef] [PubMed] [Google Scholar]
  • Lartigue L., Wilhelm C., Servais J., Factor C., Dencausse A., Bacri J.-C., Luciani N., Gazeau F., Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake. ACS Nano, 2012, 6, 2665–2678. [CrossRef] [PubMed] [Google Scholar]
  • Lartigue L., Alloyeau D., Kolosnjaj-Tabi J., Javed Y., Guardia P., Riedinger A., Péchoux C., Pellegrino T., Wilhelm C., Gazeau F., Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring. ACS Nano, 2013, 7, 3939–3952. [CrossRef] [PubMed] [Google Scholar]
  • Lévy M., Lagarde F., Maraloiu V.A., Blanchin M.G., Gendron F., Wilhelm C., Gazeau F., Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology, 2010, 21, 395103. [CrossRef] [PubMed] [Google Scholar]
  • Lévy M., Gazeau F., Bacri J.C., Wilhelm C., Devaud M., Modeling magnetic nanoparticle dipole-dipole interactions inside living cells. Phys Rev B, 2011a, 84, 075480–070754. [CrossRef] [Google Scholar]
  • Lévy M., Luciani N., Alloyeau D., Elgrabli D., Deveaux V., Péchoux C., Chat S., Wang G., Vats N., Gendron F., Factor C., Lotersztajn S., Luciani A., Wilhelm C., Gazeau F., Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 2011b, 32, 3988–3999. [CrossRef] [PubMed] [Google Scholar]
  • Lévy M., Wilhelm C., Luciani N., Devaux V., Gendron F., Luciani A., Devaud M., Gazeau F., Nanomagnetism reveals the intracellular clustering of nanoparticles in the organism. Nanoscale, 2011c, 3, 4402–4410. [CrossRef] [PubMed] [Google Scholar]
  • Lévy M., Wilhelm C., Devaud M., Levitz P., Gazeau F., How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging, 2012, 7, 373–383. [CrossRef] [PubMed] [Google Scholar]
  • Loeve S., Vincent B.B., Gazeau F., Nanomedicine metaphors: From war to care. Emergence of an oecological approach. Nano Today, 2013, 8, 560–565. [CrossRef] [Google Scholar]
  • Lowry G.V., Gregory K.B., Apte S.C., Lead J.R., Transformations of Nanomaterials in the Environment. Environ Sci Technol, 2012, 46, 6893–6899. [CrossRef] [PubMed] [Google Scholar]
  • Luciani N., Wilhelm C., Gazeau F., The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Biomaterials, 2010, 31, 7061–7069. [CrossRef] [PubMed] [Google Scholar]
  • Lundqvist M., Stigler J., Cedervall T., Berggard T., Flanagan M.B., Lynch I., Elia G., Dawson K., The evolution of the protein corona around nanoparticles: a test study. ACS Nano, 2011, 5, 7503–7509. [CrossRef] [PubMed] [Google Scholar]
  • Marangon I., Boggetto N., Ménard-Moyon C., Venturelli E., Béoutis M.-L., Péchoux C., Luciani N., Wilhelm C., Bianco A., Gazeau F., Intercellular Carbon Nanotube Translocation Assessed by Flow Cytometry Imaging. Nano Letters, 2012, 12, 4830–4837. [CrossRef] [PubMed] [Google Scholar]
  • Meddahi-Pellé A., Legrand A., Marcellan A., Louedec L., Letourneur D., Leibler L., Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by Aqueous Solutions of Nanoparticles. Angew Chem Int Ed Engl, 2014, 53, 6369–6373. [Google Scholar]
  • Monopoli M.P., Aberg C., Salvati A., Dawson K.A., Biomolecular coronas provide the biological identity of nanosized materials. Nat Nano, 2012, 7, 779–786. [Google Scholar]
  • Park J.-H., von Maltzahn G., Xu M.J., Fogal V., Kotamraju V.R., Ruoslahti E., Bhatia S.N., Sailor M.J., Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci USA, 2010, 107, 981–986. [CrossRef] [Google Scholar]
  • Perrault S.D., Chan W.C.W., In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci USA, 2010, 107, 11194–11199. [CrossRef] [Google Scholar]
  • Rivera-Gil P., De Koker S., De Geest B.G., Parak W.J., Intracellular processing of proteins mediated by biodegradable polyelectrolyte capsules. Nano Lett, 2009, 9, 4398–4402. [CrossRef] [PubMed] [Google Scholar]
  • Salvati A., Pitek A.S., Monopoli M.P., Prapainop K., Bombelli F.B., Hristov D.R., Kelly P.M., Aberg C., Mahon E. andDawson K.A., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nano, 2013, 8, 137–143. [CrossRef] [Google Scholar]
  • Silva A.A., Wilhelm C., Kolosnjaj-Tabi J., Luciani N. and Gazeau F. Cellular Transfer of Magnetic Nanoparticles Via Cell Microvesicles: Impact on Cell Tracking by Magnetic Resonance Imaging. Pharm Res, 2012, 29, 1392–1403. [CrossRef] [PubMed] [Google Scholar]
  • Silva A.K., Di Corato R., Pellegrino T., Chat S., Pugliese G., Luciani N., Gazeau F., Wilhelm C., Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale, 2013, 5, 11374–11384. [CrossRef] [PubMed] [Google Scholar]
  • Smirnov P., Gazeau F., Beloeil J.C., Doan B.T., Wilhelm C., Gillet B., Single-cell detection by gradient echo 9.4 T MRI: a parametric study. Contrast Media Mol Imaging, 2006, 1, 165–174. [CrossRef] [PubMed] [Google Scholar]
  • Smirnov P., Poirier-Quinot M., Wilhelm C., Lavergne E., Ginefri J.C., Combadière B., Clément O., Darrasse L., Gazeau F., In vivo single cell detection of tumor-infiltrating lymphocytes with a clinical 1.5 Tesla MRI system. Magn Reson Med, 2008, 60, 1292–1297. [CrossRef] [PubMed] [Google Scholar]
  • Szalay B., Tátrai E., Nyírö G., Vezér T., Dura G., Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol, 2012, 32, 446–453. [CrossRef] [PubMed] [Google Scholar]
  • Thomas C.R., George S., Horst A.M., Ji Z., Miller R.J., Peralta-Videa J.R., Xia T., Pokhrel S., Mädler L., Gardea-Torresdey J.L., Holden P.A., Keller A.A., Lenihan H.S., Nel A.E., Zink J.I., Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms. ACS Nano, 2011, 5, 13–20. [CrossRef] [PubMed] [Google Scholar]
  • Wilhelm C., Gazeau F., Nanoparticules magnétiques au cœur des cellules : des outils pour les thérapies cellulaires. Biologie Aujourd’hui, 2012, 206, 273–284. [Google Scholar]
  • Wilhelm C., Gazeau F., Roger J., Pons J.N., Bacri J.C., Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir, 2002, 18, 8148–8155. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.