Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 2, 2014
Page(s) 167 - 175
Section Impact physiopathologique et mode d’action des nanoparticules
DOI https://doi.org/10.1051/jbio/20140022
Publié en ligne 8 septembre 2014
  • Afssa mars 2009. http://www.afssa.fr/Documents/RCCP-Ra-NanoAlimentation.pdf. [Google Scholar]
  • Ahlinder L., Ekstrand-Hammarström B., Geladi P., Osterlund L., Large uptake of titania and iron. Oxide nanoparticules in the nucleus of lung epithelial cells as measured by Raman Imaging and multivariate classification. Biophys J, 2013, 105, 310–319. [CrossRef] [PubMed] [Google Scholar]
  • Becker H.M., Bertschinger M.M., Rogler G., Microparticles and their impact on intestinal immunity. Dig Dis, 2012, 30, 47–54. [CrossRef] [PubMed] [Google Scholar]
  • Brun E., Carrière M., Mabondzo A., In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO(2) nanoparticles. Biomaterials, 2012, 333, 886–896. [CrossRef] [Google Scholar]
  • Brun E., Barreau F., Veronesi G., Fayard B., Sorieul S., Chanéac C., Carapito C., Rabilloud T., Mabondzo A., Herlin-Boime N., Carrière M., Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol, 2014, 11, 13. [CrossRef] [PubMed] [Google Scholar]
  • Chen X.X., Cheng B., Yang Y.X., Cao A., Liu J.H., Du L.J., Liu Y., Zhao Y., Wang H., Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small, 2013, 9, 1765–1774. [CrossRef] [PubMed] [Google Scholar]
  • Cho W.S., Kang B.C., Lee J.K., Jeong J., Che J.H., Seok S.H., Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol, 2013, 10, 9. [CrossRef] [PubMed] [Google Scholar]
  • Duan Y., Liu J., Ma L., Li N., Liu H., Wang J., Zheng L., Liu C., Wang X., Zhao X., Yan J., Wang S., Wang H., Zhang X., Hong F., Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials, 2010, 31, 894–899. [CrossRef] [PubMed] [Google Scholar]
  • Geraets L., Oomen A.G., Krystek P., Jacobsen N.R., Wallin H., Laurentie M., Verharen H.W., Brandon E.F., de Jong W.H., Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol, 2014, 11, 30. [CrossRef] [PubMed] [Google Scholar]
  • Giovanni M., Tay C.Y., Setyawati M.I., Xie J., Ong C.N., Fan R., Yue J., Zhang L., Leong D.T., Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. Environ Toxicol, 2014 [doi: 10.1002/tox.22015]. [Google Scholar]
  • Gottschalk F., Sonderer T., Scholz R.W., Nowack B., Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol, 2009, 43, 9216–9222. [Google Scholar]
  • Harris D., Robinson JR., Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci, 1992, 81, 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Houdeau E., Nanoparticules et barrière intestinale : comprendre les mécanismes de franchissement. Innov Agro, 2012, 24, 105–112. [Google Scholar]
  • Janer G., Mas del Molino E., Fernández-Rosas E., Fernández A., Vázquez-Campos S., Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol Lett, 2014, 228, 103–110. [CrossRef] [PubMed] [Google Scholar]
  • Jin C., Tang Y., Fan X.Y., Ye X.T., Li X.L., Tang K., Zhang Y.F., Li A.G., Yang Y.J., In vivo evaluation of the interaction between titanium dioxide nanoparticle and rat liver DNA. Toxicol Ind Health, 2013, 29, 235–244. [CrossRef] [PubMed] [Google Scholar]
  • JOUE n° L275-20.10.2011 : http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:FR:PDF. [Google Scholar]
  • Kang S.J., Kim B.M., Lee Y.J., Chung H.W., Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen, 2008, 49, 399–405. [CrossRef] [PubMed] [Google Scholar]
  • Koeneman B.A., Zhang Y., Westerhoff P., Chen Y., Crittenden J.C., Capco D.G., Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol, 2010, 26, 225–238. [CrossRef] [PubMed] [Google Scholar]
  • Larue C., Veronesi G., Flank A.M., Surble S., Herlin-Boime N., Carrière M., Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A, 2012a, 75, 722–734. [CrossRef] [PubMed] [Google Scholar]
  • Larue C., Laurette J., Herlin-Boime N., Khodja H., Fayard B., Flank A.M., Brisset F., Carrière M., Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ, 2012b, 431, 197–208. [CrossRef] [PubMed] [Google Scholar]
  • Li N., Ma L.L, Wang J., Zheng L., Liu J., Duan Y.M., Liu H., Zhao X., Wang H., Hong F., Xie Y., Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett, 2010, 5, 108–115. [CrossRef] [Google Scholar]
  • Lomer M.C.E., Thompson R.P.H., Commisso J., Keen C.L., Powell J.J., Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst, 2000, 125, 2339–2343. [CrossRef] [PubMed] [Google Scholar]
  • Lomer M.C., Hutchinson C., Volkert S., Greenfield S.M., Catterall A., Thompson R.P., Powell J.J., Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr, 2004, 92, 947–955. [CrossRef] [PubMed] [Google Scholar]
  • Ménard S., Cerf-Bensussan N., Heyman M., Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol, 2010, 3, 247–259 [CrossRef] [PubMed] [Google Scholar]
  • Moussaoui N., Braniste V., Ait-Belgnaoui A., Gabanou M., Sekkal S., Olier M., Théodorou V., Martin P.G., Houdeau E., Changes in intestinal glucocorticoid sensitivity in early life shape the risk of epithelial defect in maternal-deprived rats. PloS One, 2014, 9, e88382. [CrossRef] [PubMed] [Google Scholar]
  • Myers W.D., Ludden P.A., Nayigihugu V., Hess B.W., Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J Anim Sci, 2004, 82, 179–183. [PubMed] [Google Scholar]
  • Peters R.J., van Bemmel G., Herrera-Rivera Z., Helsper H.P., Marvin H.J., Weigel S., Tromp P.C., Oomen A.G., Rietveld A.G., Bouwmeester H., Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem, 2014, 9, 6285-6293. [CrossRef] [Google Scholar]
  • Powell J.J., Faria N., Thomas-McKay E., Pele L.C., Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun, 2010, 34, J226–J233. [Google Scholar]
  • Principato M., Gastrointestinal Immunoregulation and the Challenges of Nanotechnology in Foods. In Innocenzo Muzzalupo (Ed.), Agricultural and Biological Sciences “Food Industry”, 2013, 491–517. [Google Scholar]
  • Roblegg E., Fröhlich E., Meindl C., Teubl B., Zaversky M., Zimmer A., Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology, 2012, 6, 399–413. [CrossRef] [PubMed] [Google Scholar]
  • Servin A.D., Morales M.I., Castillo-Michel H., Hernandez-Viezcas J.A., Munoz B., Zhao L., Nunez J.E., Peralta-Videa J.R., Gardea-Torresdey J.L., Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol, 2013, 47, 11592–11598. [CrossRef] [PubMed] [Google Scholar]
  • Shrivastava R., Raza S., Yadav A., Kushwaha P., Flora S.J., Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol, 2014, 37, 336–347. [CrossRef] [PubMed] [Google Scholar]
  • Squier C.A., The permeability of oral mucosa. Crit Rev Oral Biol Med, 1991, 2, 13–32. [PubMed] [Google Scholar]
  • Sycheva L.P., Zhurkov V.S., Iurchenko V.V., Daugel-Dauge N.O., Kovalenko M.A., Krivtsova E.K., Durnev A.D., Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res, 2011, 726, 8–14. [CrossRef] [PubMed] [Google Scholar]
  • Tassinari R., Cubadda F., Moracci G., Aureli F., D’Amato M., Valeri M., De Berardis B., Raggi A., Mantovani A., Passeri D., Rossi M., Maranghi F., Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology, 2014, 8, 654–662. [CrossRef] [PubMed] [Google Scholar]
  • Tay C.Y., Fang W., Setyawati M.I., Chia S.L., Tan K.S., Hong C.H., Leong D.T., Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces, 2014, 6, 6248–6256. [CrossRef] [PubMed] [Google Scholar]
  • Teubl B.J., Absenger M., Fröhlich E., Leitinger G., Zimmer A., Roblegg E., The oral cavity as a biological barrier system : design of an advanced buccal in vitro permeability model. Eur J Pharm Ther, 2013, 84, 386–393. [Google Scholar]
  • Teubl B.J., Leitinger G., Schneider M., Lehr C.M., Fröhlich E., Zimmer A., Roblegg E., The buccal mucosa as a route for TiO2 nanoparticle uptake. Nanotoxicology, 2014, 29, 1–9. [CrossRef] [Google Scholar]
  • Thomson P.J., Potten C.S., Appleton D.R., Mapping dynamic epithelial cell proliferative activity within the oral cavity of man: a new insight into carcinogenesis? Br J Oral Maxillofac Surg, 1999, 37, 377–383. [CrossRef] [PubMed] [Google Scholar]
  • Turner J.R. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol, 2009, 9, 799–809. [CrossRef] [PubMed] [Google Scholar]
  • Weir A., Westerhoff P., Fabricius L., Hristovski K., von Goetz N., Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol, 2012, 46, 2242–2250. [CrossRef] [PubMed] [Google Scholar]
  • Winter M., Beer H.D., Hornung V., Krämer U., Schins R.P., Förster I., Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology, 2011, 5, 326–40. [CrossRef] [PubMed] [Google Scholar]
  • Yang Y., Doudrick K,. Bi X., Hristovski K., Herckes P., Westerhoff P., Kaegi R., Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ Sci Technol, 2014, 48, 6391–6400. [CrossRef] [PubMed] [Google Scholar]
  • Yu B., Leung K.M., Guo Q., Lau W.M., Yang J., Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application. Nanotechnology, 2011, 22, 115603. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.