Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 2, 2014
Page(s) 159 - 165
Section Impact physiopathologique et mode d’action des nanoparticules
DOI https://doi.org/10.1051/jbio/2014020
Publié en ligne 8 septembre 2014
  • Abbott N.J., Rönnbäck L., Hansson E., Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006, 7, 41–53. [CrossRef] [PubMed] [Google Scholar]
  • Afsset, Évaluation des risques liés aux nanomatériaux pour la population générale et pour l’environnement. http://www.ladocumentationfrancaise.fr/var/storage/rapports-publics/104000168/0000.pdf (2010). [Google Scholar]
  • Anses, Avis et rapport de l’Anses relatifs à l’évaluation des risques liés aux nanomatériaux – enjeux et mise à jour des connaissances. http://tr.anses.fr/r5.aspx?GV1=URFK06L000000021V10045JB00028CXGJ&mpvrs=0005831A033CC3A6D (2014). [Google Scholar]
  • Alvarez Y.D., Fauerbach J.A., Pellegrotti J.V., Jares-Erijman E.A., Jovin T.M., Stefani F.D., Influence of gold nanoparticles on the kinetics of alpha-synuclein aggregation. Nano Lett, 2013, 13, 6156–6176. [CrossRef] [PubMed] [Google Scholar]
  • Balvay A., Thieriet N., Lakhdar L., Bencsik A. Comparative study of neurologic effects of nano-TiO2 versus SiO2 after direct intracerebral exposure in mice. J Phys : Conf Ser, 2013, 429, 012027. [CrossRef] [Google Scholar]
  • Brun E., Carrière M., Mabondzo A., In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomat, 2012, 33, 886–896. [Google Scholar]
  • Buzea C., Pacheco I.I., Robbie K., Nanomaterials and nanoparticles : sources and toxicity. Biointerphases, 2007, 2, 17–77. [Google Scholar]
  • Calderón-Garcidueñas L., Franco-Lira M., Mora-Tiscareño A., Medina-Cortina H., Torres-Jardón R., Kavanaugh M., Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses – it is time to face the evidence. Biomed Res Int, 2013, 161687. (doi: 10.1155/2013/161687) [Google Scholar]
  • Davies K.M., Bohic S., Carmona A., Ortega R., Cottam V., Hare D.J., Finberg J.P., Reyes S., Halliday G.M., Mercer J.F., Double K.L., Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging, 2014, 35, 858–866. [CrossRef] [PubMed] [Google Scholar]
  • Deng Z.J., Mortimer G., Schiller T., Musumeci A., Martin D., Minchin R.F., Differential plasma protein binding to metal oxide nanoparticles. Nanotechnol, 2009, 20, 455101. [CrossRef] [Google Scholar]
  • Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., Carter J., Potter R., Maynard A., Ito Y., Finkelstein J, Oberdörster G., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect, 2006, 114, 1172–1178. [CrossRef] [PubMed] [Google Scholar]
  • Furness J.B., Rivera L.R., Cho H.J., Bravo D.M., Callaghan B., The gut as a sensory organ. Nat Rev Gastroenterol Hepathol, 2013, 10, 729–740. [CrossRef] [Google Scholar]
  • Haase A., Rott S., Mantion A., Graf P., Plendl J., Thunemann A.F., Meier W.P., Taubert A., Luch A., Reiser G., Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci, 2012, 126, 457–468. [CrossRef] [PubMed] [Google Scholar]
  • Hu R., Gong X., Duan Y., Li N., Che Y., Cui Y., Zhou M., Liu C., Wang H., Hong F., Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomat, 2010, 31, 8043–8050. [CrossRef] [Google Scholar]
  • Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M., Ali S.F., Schlager J.J., The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci, 2006, 92, 456–463. [CrossRef] [PubMed] [Google Scholar]
  • Kreuter J., Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev, 2001, 47, 65–81. [Google Scholar]
  • Linse S., Cabaleiro-Lago C., Xue W.F., Lynch I., Lindman S., Thulin E., Radford S.E., Dawson K.A., Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA, 2007, 104, 8691–8696. [CrossRef] [Google Scholar]
  • Liu H., Ma L., Zhao J., Liu J., Yan J., Ruan J., Hong F., Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res, 2009, 129, 170–180. [CrossRef] [PubMed] [Google Scholar]
  • Locht L.J., Pedersen M.Ø., Markholt S., Bibby B.M., Larsen A., Penkowa M., Stoltenberg M., Rungby J., Metallic silver fragments cause massive tissue loss in the mouse brain. Basic Clin Pharmacol Toxicol, 2011, 109, 1–10. [CrossRef] [Google Scholar]
  • Long T.C., Saleh N., Tilton R.D., Lowry G.V., Veronesi B., Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol, 2006, 40, 4346–4352. [CrossRef] [PubMed] [Google Scholar]
  • Lovric J., Bazzi H.S., Cuie Y., Fortin G.R., Winnik F.M., Maysinger D., Differences in subcellular distribution and toxicity of green and red emetting CdTe quantum dots. J Mol Med, 2005, 83, 377–385. [CrossRef] [PubMed] [Google Scholar]
  • Mercer R., Scabilloni J.F., Hubbs A.F., Wang L., Batteli L.A., McKinney W., Castranova V., Porter D.W., Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol, 2013, 10, 38. [CrossRef] [PubMed] [Google Scholar]
  • Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C., Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol, 2004, 16, 437–445. [Google Scholar]
  • Oberdörster G., Oberdörster E., Oberdörster J., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 2005, 113, 823–839. [Google Scholar]
  • Oberdörster G., Elder A., Rinderknecht A., Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol, 2009, 9, 4996–5007. [CrossRef] [PubMed] [Google Scholar]
  • Ragnaill M.N., Brown M., Ye D., Bramini M., Callanan S., Lynch I., Dawson K.A., Internal benchmarking of a human blood-brain barrier cell model for screening of nanoparticle uptake and transcytosis. Eur J Pharm Biopharm, 2011, 77, 360–367. [CrossRef] [PubMed] [Google Scholar]
  • Sàrközi L., Horvàth E., Kónya Z., Kiricsi I., Szalay B., Vezér T., Papp A., Subacute intratracheal exposure of rats to manganese nanoparticles: behavioural, electrophysiological, and general toxicological effects. Inhal Toxicol, 2009, 21 suppl 1, 83–91. [CrossRef] [PubMed] [Google Scholar]
  • Sharma H.S., Sharma A., Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res, 2007, 162, 245–273. [CrossRef] [PubMed] [Google Scholar]
  • Shimada A., Kawamura N., Okajima M., Kaewamatawong T., Inoue H., Morita T., Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol, 2006, 34, 949–957. [CrossRef] [PubMed] [Google Scholar]
  • Shimizu M., Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K., Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol, 2009, 29, 6–20. [Google Scholar]
  • Simkó M., Mattsson M.O., Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol, 2010, 7, 7–42. [CrossRef] [PubMed] [Google Scholar]
  • Tarohda T., Yamamoto M., Amamo R., Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal Bioanal Chem 2004, 380, 240–246. [CrossRef] [PubMed] [Google Scholar]
  • Wang B., Feng W.Y., Wang M., Shi J.W., Zhang F., Ouyang H., Zhao Y.L., Chai Z.F., Huang Y.Y., Xie Y.N., Wang H.F., Wang J., Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res, 2007, 118, 233–243. [CrossRef] [PubMed] [Google Scholar]
  • Wang J., Zhou G., Chen C., Yu H., Wang T., Ma Y., Jia G., Gao Y., Li B., Sun J., Li Y., Jiao F., Zhao Y., Chai Z., Acute toxicity and bio-distribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett, 2007, 168, 176–185. [Google Scholar]
  • Wang J., Rahman M.F., Duhart H.M., Newport G.D., Patterson T.A., Murdock R.C., Hussain S.M., Schlager J.J., Ali S.F., Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicol, 2009, 30, 926–933. [CrossRef] [Google Scholar]
  • Wang Y., Chen Z., Ba T., Pu J., Chen T, Song Y., Gu Y., Qian Q., Xu Y., Xiang K., Wang H., Jia G., Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small, 2013, 9, 1742–1752. [CrossRef] [PubMed] [Google Scholar]
  • Yokel R., Grulke E., MacPhail R., Metal-based nanoparticle interactions with the nervous system: the challenge of the brain entry and the risk of retention in the organism. WIREs Nanomed Nanobiotechnol, 2013, 5, 346–373. [CrossRef] [Google Scholar]
  • Zensi A., Begley D., Pontikis C., Legros C., Mihoreanu L., Wagner S., Büchel C., von Briesen H., Kreuter J., Albumin nanoparticles targeted with Apo-E. enter the CNS by transcytosis and are delivered to neurones. J Control Release, 2009, 137, 78–86. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.