Accès gratuit
Biologie Aujourd'hui
Volume 208, Numéro 2, 2014
Page(s) 151 - 158
Section Impact physiopathologique et mode d’action des nanoparticules
Publié en ligne 8 septembre 2014
  • Alessandrini F., Beck-Speier I., Krappmann D., Weichenmeier I., Takenaka S., Karg E., Kloo B., Schulz H., Jakob T., Mempel M., Behrendt H., Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. Am J Respir Crit Care Med, 2009, 179, 984–991. [CrossRef] [PubMed] [Google Scholar]
  • Andujar P., Lanone S., Brochard P., Boczkowski J., Respiratory effects of manufactured nanoparticles. Rev Mal Respir, 2011, 28, e66–75. [CrossRef] [PubMed] [Google Scholar]
  • Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P., Wiesner M.R., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol, 2009, 4, 634–641. [Google Scholar]
  • Baeza A., Marano F., Pollution atmosphérique et maladies respiratoires : Un rôle central pour le stress oxydant. Med Sci (Paris), 2007, 23, 497–501. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Baeza-Squiban A., Lanone S., Exposure, Uptake, and Barriers. In: “Nanotoxicology and Nanoethics”, Lahmani M., Marano F., Houdy P., (Eds.), 2011, Belin, Paris, pp. 53–78. [Google Scholar]
  • Belade E., Armand L., Martinon L., Kheuang L., Fleury-Feith J., Baeza-Squiban A., Lanone S., Billon-Galland M.A., Pairon J.C., Boczkowski J., A comparative transmission electron microscopy study of titanium dioxide and carbon black nanoparticles uptake in human lung epithelial and fibroblast cell lines. Toxicol In Vitro, 2012, 26, 57–66. [CrossRef] [PubMed] [Google Scholar]
  • Braakhuis H.M., Park M.V., Gosens I., De Jong W.H., Cassee F.R., Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol, 2014, 11, 18. [CrossRef] [PubMed] [Google Scholar]
  • Cho W.S., Duffin R., Thielbeer F., Bradley M., Megson I.L., Macnee W., Poland C.A., Tran C.L., Donaldson K., Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci, 2012, 126, 469–477. [CrossRef] [PubMed] [Google Scholar]
  • Choi H.S., Ashitate Y., Lee J.H., Kim S.H., Matsui A., Insin N., Bawendi M.G., Semmler-Behnke M., Frangioni J.V., Tsuda A., Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol, 2010, 28, 1300–1303. [CrossRef] [PubMed] [Google Scholar]
  • Cohen J.M., Derk R., Wang L., Godleski J., Kobzik L., Brain J., Demokritou P., Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro. Nanotoxicology, 2014, 8, 216–225. [CrossRef] [PubMed] [Google Scholar]
  • Deng Z.J., Liang M., Monteiro M., Toth I., Minchin R.F., Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol, 2011, 6, 39–44. [CrossRef] [PubMed] [Google Scholar]
  • Deng Z.J., Butcher N.J., Mortimer G.M., Jia Z., Monteiro M.J., Martin D.J., Minchin R.F., Interaction of human arylamine N-acetyltransferase 1 with different nanomaterials. Drug Metab Dispos, 2014, 42, 377–383. [CrossRef] [PubMed] [Google Scholar]
  • Duffin R., Tran L., Brown D., Stone V., Donaldson K., Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol, 2007, 19, 849–856. [CrossRef] [PubMed] [Google Scholar]
  • George I., Vranic A., Boland S., Borot Mc., Marano F., Baeza-Squiban A., Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer. J Phys Conf Ser, 2013, 429, 012022. [CrossRef] [Google Scholar]
  • George I., Vranic A., Courtois A., Boland S., Baeza-Squiban A., Development of an in vitro model of human bronchial epithelial barrier to study nanoparticle translocation. Toxicol In Vitro, en révision [Google Scholar]
  • Geys J., Coenegrachts L., Vercammen J., Engelborghs Y., Nemmar A., Nemery B., Hoet P.H., In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett, 2006, 160, 218–226. [CrossRef] [PubMed] [Google Scholar]
  • Hansen S.F., Larsen B.H., Olsen S.I., Baun A., Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology, 2007, 1, 243–250. [CrossRef] [Google Scholar]
  • Hussain S., Boland S., Baeza-Squiban A., Hamel R., Thomassen L.C., Martens J.A., Billon-Galland M.A., Fleury-Feith J., Moisan F., Pairon J.C., Marano F., Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology, 2009, 260, 142–149. [CrossRef] [PubMed] [Google Scholar]
  • Hussain S., Thomassen L.C., Ferecatu I., Borot M.C., Andreau K., Martens J.A., Fleury J., Baeza-Squiban A., Marano F., Boland S., Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol, 2010, 7, 10. [CrossRef] [PubMed] [Google Scholar]
  • Hussain S., Vanoirbeek J.A., Luyts K., De Vooght V., Verbeken E., Thomassen L.C., Martens J.A., Dinsdale D., Boland S., Marano F., Nemery B., Hoet P.H., Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J, 2011, 37, 299–309. [CrossRef] [PubMed] [Google Scholar]
  • Hussain S., Garantziotis S., Rodrigues-Lima F., Dupret J.M., Baeza-Squiban A., Boland S., Intracellular signal modulation by nanomaterials. Adv Exp Med Biol, 2014, 811, 111–134. [CrossRef] [PubMed] [Google Scholar]
  • Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J., Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem, 2014, 33, 481–492. [CrossRef] [PubMed] [Google Scholar]
  • Klein C.L., Wiench K., Wiemann M., Ma-Hock L., van Ravenzwaay B., Landsiedel R., Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol, 2012, 86, 1137–1151. [CrossRef] [PubMed] [Google Scholar]
  • Kreyling W.G., Semmler-Behnke M., Takenaka S., Möller W., Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc Chem Res, 2013, 46, 714–722. [CrossRef] [PubMed] [Google Scholar]
  • Kreyling W.G., Hirn S., Möller W., Schleh C., Wenk A., Celik G., Lipka J., Schäffler M., Haberl N., Johnston B.D., Sperling R., Schmid G., Simon U., Parak W.J., Semmler-Behnke M., Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano, 2014, 8, 222–233. [CrossRef] [PubMed] [Google Scholar]
  • Kumar A., Dhawan A., Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol, 2013, 87, 1883–1900. [CrossRef] [PubMed] [Google Scholar]
  • Landsiedel R., Ma-Hock L., Hofmann T., Wiemann M., Strauss V., Treumann S., Wohlleben W., Gröters S., Wiench K., van Ravenzwaay B., Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol, 2014, 11, 16. [CrossRef] [PubMed] [Google Scholar]
  • Lu S., Duffin R., Poland C., Daly P., Murphy F., Drost E., Macnee W., Stone V., Donaldson K., Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect, 2009, 117, 241–247. [CrossRef] [PubMed] [Google Scholar]
  • Manke A1, Wang L., Rojanasakul Y., Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int, 2013, 2013, 942–916. [Google Scholar]
  • Marano F., Hussain S., Rodrigues-Lima F., Baeza-Squiban A., Boland S., Nanoparticles: molecular targets and cell signalling. Arch Toxicol, 2011, 85, 733–741. [CrossRef] [PubMed] [Google Scholar]
  • Monopoli M.P., Aberg C., Salvati A., Dawson K.A., Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol, 2012, 7, 779–786. [CrossRef] [PubMed] [Google Scholar]
  • Murphy F.A., Poland C.A., Duffin R., Al-Jamal K.T., Ali-Boucetta H., Nunes A., Byrne F., Prina-Mello A., Volkov Y., Li S., Mather S.J., Bianco A., Prato M., Macnee W., Wallace W.A., Kostarelos K., Donaldson K., Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol, 2011, 178, 2587–2600. [CrossRef] [PubMed] [Google Scholar]
  • Murphy F.A., Poland C.A., Duffin R., Donaldson K., Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology, 2013, 7, 1157–1167. [CrossRef] [PubMed] [Google Scholar]
  • Oberdörster G., Finkelstein J.N., Johnston C., Gelein R., Cox C., Baggs R., Elder A.C., Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst, 2000, 96, 5–74. [PubMed] [Google Scholar]
  • Oberdörster G., Oberdörster E., Oberdörster J., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 2005, 113, 823–839. [Google Scholar]
  • Shi H., Magaye R., Castranova V., Zhao J., Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol, 2013, 10, 15. [CrossRef] [PubMed] [Google Scholar]
  • Saptarshi S.R., Duschl A., Lopata A.L., Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol, 2013, 11, 26. [CrossRef] [Google Scholar]
  • Sanfins E., Dairou J., Hussain S., Busi F., Chaffotte A.F., Rodrigues-Lima F., Dupret J.M., Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation of arylamine N-acetyltransferase enzymes. ACS Nano, 2011, 5, 4504–4511. [CrossRef] [PubMed] [Google Scholar]
  • Schinwald A., Donaldson K., Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo. Part Fibre Toxicol, 2012, 9, 34. [CrossRef] [PubMed] [Google Scholar]
  • Setyawati M.I., Tay C.Y., Chia S.L., Goh S.L., Fang W., Neo M.J., Chong H.C., Tan S.M., Loo S.C., Ng K.W., Xie J.P., Ong C.N., Tan N.S., Leong D.T., Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat Commun, 2013, 4, 1673. [CrossRef] [PubMed] [Google Scholar]
  • Stoeger T., Reinhard C., Takenaka S., Schroeppel A., Karg E., Ritter B., Heyder J., Schulz H., Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect, 2006, 114, 328–333. [CrossRef] [PubMed] [Google Scholar]
  • Witschger O., Fabriès J.F., Particules ultra-fines et santé au travail: 1-Caractéristiques et effets potentiels sur la santé. Hygiène et sécurité du travail. Cahiers de notes documentaires, ND2227, 2005, 199, 21–35. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.