Accès gratuit
Biologie Aujourd'hui
Volume 208, Numéro 3, 2014
Page(s) 193 - 206
Section La biosphère profonde : des organismes qui repoussent les limites de la vie
Publié en ligne 5 décembre 2014
  • Abe F., Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival : Perspectives from piezophysiology. Biosci Biotech Biochem, 2007, 71, 2347–2357. [CrossRef] [Google Scholar]
  • Alain K., Marteinsson V.T., Miroshnichenko M.L., Bonch-Osmolovskaya E.A., Prieur D., Birrien J.L., Marinitoga piezophila sp nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol, 2002, 52, 1331–1339. [CrossRef] [PubMed] [Google Scholar]
  • Allen E.E., Facciotti D., Bartlett D.H., Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol, 1999, 65, 1710–1720. [PubMed] [Google Scholar]
  • Bastin E.S., Greer F.E., Merritt C.A., Moulton G., The presence of sulphate reducing bacteria in oil field waters. Science, 1926, 63, 21–24. [CrossRef] [PubMed] [Google Scholar]
  • Birrien J.-L., Zeng X., Jebbar M., Cambon-Bonavita M.-A., Quérellou J., Oger P., Bienvenu N., Xiao X., Prieur D., Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol, 2011, 61, 2827–2831. [CrossRef] [PubMed] [Google Scholar]
  • Bridgman P., The coagulation of albumen by pressure. J Biol Chem, 1914, 19, 511–512. [Google Scholar]
  • Campanaro S., Vezzi A., Vitulo N., Lauro F., D’Angelo M., Simonato F., Cestaro A., Malacrida G., Bertoloni G., Valle G., Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics, 2005, 6, 122. [CrossRef] [PubMed] [Google Scholar]
  • Canganella F., Gambacorta A., Kato C., Horikoshi K., Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res, 2000, 154, 297–306. [CrossRef] [PubMed] [Google Scholar]
  • Canganella F., Gonzalez J.M., Yanagibayashi M., Kato C., Horikoshi K. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol, 1997, 168, 1–7. [CrossRef] [PubMed] [Google Scholar]
  • Canganella F., Jones W.J., Gambacorta A., Antranikian G. Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas basin hydrothermal vent site. Int J Syst Evol Microbiol, 1998, 48, 1181–1185. [Google Scholar]
  • Cario A., Jebbar M., Kervadec N., Oger P., Influence of high hydrostatic pressure on the accumulation of mannosylglycerate in Thermococcus barophilus, a piezo-hyperthermophilic archaeon, in response to salt and heat stresses. Environ Microbiol, 2014, soumis. [Google Scholar]
  • Certes A., Sur la culture, à l’abri des germes atmosphériques, des eaux et des sédiments rapportés par les expéditions du Travailleur et du Talisman. Compt Rend Acad Sci, 1884, 98, 690–693. [Google Scholar]
  • Chilukuri L.N., Bartlett D.H., Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth. Microbiology, 1997, 143, 1163–1174. [CrossRef] [PubMed] [Google Scholar]
  • Corliss J.B., Dymond J., Gordon L.I., Edmond J.M., von Herzen R.P., Ballard R.D., Green K., Williams D., Bainbridge A., Crane K., Submarine thermal springs on the Galàpagos rift. Science, 1979, 203, 1073–1083. [Google Scholar]
  • DeLong E.F., Yayanos A.A., Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol, 1986, 51, 730–737. [PubMed] [Google Scholar]
  • DeLong E., Franks D., Yayanos A., Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol, 1997, 63, 2105–2108. [PubMed] [Google Scholar]
  • Deming J.W., Somers L.K., Straube W.L., Swartz D.G., Macdonell M.T., Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol, 1988, 10, 152–160. [CrossRef] [Google Scholar]
  • Eisenmenger M.J., Reyes de Corcuera J.I., High pressure enhancement of enzymes. A review. Enz Microb Technol, 2009, 45, 331–347. [CrossRef] [Google Scholar]
  • Eloe E.A., Lauro F.M., Vogel R.F., Bartlett D.H., The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high pressure conditions. Applied Environ Microbiol, 2008, 74, 6298–6305. [CrossRef] [Google Scholar]
  • Eloe E.A., Malfatti F., Gutierrez J., Hardy K., Schmidt W.E., Pogliano K., Pogliano J., Azam F., Bartlett D.H., Isolation and characterization of a psychropiezophilic alphaproteobacterium. Applied Environ Microbiol, 2011, 77, 8145–8153. [CrossRef] [Google Scholar]
  • Fernandes P., Domitrovic T., Kao C.M., Kurtenbach E., Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett, 2004, 556, 153–160. [CrossRef] [PubMed] [Google Scholar]
  • Fiess J.C., Kunkel-Patterson A., Mathias L., Riley L.G., Yancey P.H., Hirano T., Grau E.G., Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol : Mol Int Physiol, 2007, 146, 252–264. [CrossRef] [Google Scholar]
  • Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguenes G., Rimbault A., Barbier G., Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji basin. Int J Syst Evol Microbiol, 1996, 46, 1113–1119. [Google Scholar]
  • Gross M., Jaenicke R., Pressure-induced dissociation of tight couple ribosomes. FEBS Lett, 1990, 267, 239–241. [CrossRef] [PubMed] [Google Scholar]
  • Heremans K., Smeller L., Protein structure and dynamics at high pressure. Biochim Biophys Acta-Prot Struct Mol Enzymol, 1998, 1386, 353–370. [CrossRef] [Google Scholar]
  • Huber H., Thomm M., König H., Thies G., Stetter K.O., Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol, 1982, 132, 47–50. [Google Scholar]
  • Jannasch H.W., Taylor C.D., Deep-sea microbiology. Annu Rev Microbiol, 1984, 38, 487–514. [CrossRef] [PubMed] [Google Scholar]
  • Jones W., Leigh J., Mayer F., Woese C., Wolfe R., Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol, 1983, 136, 254-261. [CrossRef] [Google Scholar]
  • Kallmeyer J., Pockalny R., Adhikari R.R., Smith D.C., D’Hondt S., Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 2012, 109, 16213–16216. [CrossRef] [Google Scholar]
  • Kasahara R., Sato T., Tamegai H., Kato C., Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica db21mt-2 isolated from the 11,000 m depth of the Mariana trench. Biosci Biotech Biochem, 2009, 73, 2541–2543. [CrossRef] [Google Scholar]
  • Kato C., Sato T., Horikoshi K., Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Cons, 1995, 4, 1–9. [CrossRef] [Google Scholar]
  • Kato C., Li L., Nogi Y., Nakamura Y., Tamaoka J., Horikoshi K., Extremely barophilic bacteria isolated from the Mariana trench, Challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol, 1998, 64, 1510–1513. [PubMed] [Google Scholar]
  • Kawamoto J., Sato T., Nakasone K., Kato C., Mihara H., Esaki N., Kurihara T., Favourable effects of eicosapentaenoic acid on the late step of the cell division in a piezophilic bacterium, Shewanella violacea dss12, at high hydrostatic pressures. Environ Microbiol, 2011, 13, 2293–2298. [CrossRef] [PubMed] [Google Scholar]
  • Knorr D., Heinz V., Buckow R., High pressure application for food biopolymers. Biochim Biophys Acta-Prot Proteom, 2006, 1764, 619–631. [CrossRef] [Google Scholar]
  • Lauro F.M., Chastain R.A., Blankenship L.E., Yayanos A.A., Bartlett D.H., The unique 16s rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol, 2007, 73, 838–845. [CrossRef] [PubMed] [Google Scholar]
  • LeChâtelier H.L., Sur un énoncé général des lois d’équilibres chimiques. Compt Rend Acad Sci, 1884, 99, 786–789. [Google Scholar]
  • Marteinsson V.T., Moulin P., Birrien J.L., Gambacorta A., Vernet M., Prieur D., Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl Environ Microbiol, 1997, 63, 1230–1236. [PubMed] [Google Scholar]
  • Marteinsson V.T., Birrien J.L., Reysenbach A.L., Vernet M., Marie D., Gambacorta A., Messner P., Sleytr U.B., Prieur D., Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol, 1999a, 49, 351–359. [Google Scholar]
  • Marteinsson V.T., Reysenbach A.L., Birrien J.L., Prieur D., A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles, 1999b, 3, 277–282. [CrossRef] [PubMed] [Google Scholar]
  • Martin D., Bartlett D.H., Roberts M.F., Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles, 2002, 6, 507–514. [CrossRef] [PubMed] [Google Scholar]
  • Michels P.C., Hei D., Clark D.S., Pressure effects on enzyme activity and stability at high temperatures. Adv Prot Chem, 1996, 48, 341–376. [CrossRef] [Google Scholar]
  • Morita R.Y., Effect of hydrostatic pressure on succinic, formic, and malic dehydrogenases in Escherichia coli. J Bacteriol, 1957, 74, 251–255. [PubMed] [Google Scholar]
  • Nagle J.F., Theory of the main lipid bilayer phase transition. Annu Rev Phys Chem, 1980, 31, 157–196. [CrossRef] [Google Scholar]
  • Nogi Y., Kato C., Taxonomic studies of extremely barophilic bacteria isolated from the Mariana trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles, 1999, 3, 71–77. [CrossRef] [PubMed] [Google Scholar]
  • Nogi Y., Kato C., Horikoshi K., Moritella japonica sp. Nov., a novel barophilic bacterium isolated from a japan trench sediment. J Gen Appl Microbiol, 1998a, 44, 289–295. [CrossRef] [PubMed] [Google Scholar]
  • Nogi Y., Kato C., Horikoshi K., Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. Nov. Arch. Microbiol, 1998b, 170, 331–338. [CrossRef] [PubMed] [Google Scholar]
  • Nogi Y., Kato C., Horikoshi K., Psychromonas kaikoae sp. Nov., a novel from the deepest piezophilic bacterium cold-seep sediments in the Japan trench. Int J Syst Evol Microbiol, 2002, 52, 1527–1532. [CrossRef] [PubMed] [Google Scholar]
  • Nogi Y., Hosoya S., Kato C., Horikoshi K., Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan trench. Int J Syst Evol Microbiol, 2004, 54, 1627–1631. [CrossRef] [PubMed] [Google Scholar]
  • Nogi Y., Hosoya S., Kato C., Horikoshi K., Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan trench. Int J Syst Evol Microbiol, 2007, 57, 1360–1364. [CrossRef] [PubMed] [Google Scholar]
  • Oger P.M., Jebbar M., The many ways of copying with pressure. Res Microbiol, 2010, 161, 799–809. [CrossRef] [PubMed] [Google Scholar]
  • Oger P., Cario A., Adaptation of the archaeal membrane. Biophys Chem, 2013, 15, 42–56. [CrossRef] [Google Scholar]
  • Piccard J., Dietz R., Seven miles down : The story of the bathyscaph Trieste. G.P. Putnams Sons, New York, 1962, 521p. [Google Scholar]
  • Pledger R.J., Crump B.C., Baross J.A., A barophilic response by two hyperthermophilic, hydrothermal vent archaea : An upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol Ecol, 1994, 14, 233–241. [CrossRef] [Google Scholar]
  • Regnard P., Recherches expérimentales sur l’influence des très hautes pressions sur les organismes vivants. Compt Rend Acad Sci, 1884, 98, 745–747. [Google Scholar]
  • Sinensky M., Homeoviscous adaptation - a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA, 1974, 71, 522–525. [CrossRef] [Google Scholar]
  • Takai K., Horikoshi K., Thermosipho japonicus sp. Nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles, 2000, 4, 9–17. [CrossRef] [PubMed] [Google Scholar]
  • Takai K., Sugai A., Itoh T., Horikoshi K., Palaeococcus ferrophilus gen. Nov., sp. Nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol, 2000, 50, 489–500. [CrossRef] [PubMed] [Google Scholar]
  • Takai K., Nakamura K., Toki T., Tsunogai U., Miyazaki M., Miyazaki J., Hirayama H., Nakagawa S., Nunoura T., Horikoshi K., Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA, 2008, 105, 10949–10954. [CrossRef] [Google Scholar]
  • Takai K., Miyazaki M., Hirayama H., Nakagawa S., Querellou J., Godfroy A. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol, 2009, 11, 1983–1997. [CrossRef] [PubMed] [Google Scholar]
  • Thomson C., The depths of the sea. 1873, Macmillan and Co, London, 20 volumes. [Google Scholar]
  • von WolzogenKühr C., van der Vlugt L., The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water, 1934, 18, 147–165. [Google Scholar]
  • Wang F., Wang J., Jian H., Zhang B., Li S., Wang F., Zeng X., Gao L., Bartlett D.H., Yu J., Hu S., Xiao X., Environmental adaptation : Genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PloS One, 2008, 3, e1937. [CrossRef] [PubMed] [Google Scholar]
  • Welch T.J., Bartlett D.H., Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol Microbiol, 1998, 27, 977–985. [CrossRef] [PubMed] [Google Scholar]
  • Welch T.J., Farewell A., Neidhardt F.C., Bartlett D.H., Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol, 1993, 175, 7170–7177. [PubMed] [Google Scholar]
  • Whitman W.B., Coleman D.C., Wiebe W.J., Prokaryotes : The unseen majority. Proc Natl Acad Sci USA, 1998, 95, 6578–6583. [CrossRef] [Google Scholar]
  • Winter R., Jeworrek C., Effect of pressure on membranes. Soft Matt, 2009, 5, 3157–3173. [Google Scholar]
  • Wolff T., Galathea report : Scientific results of the Danish deep-sea expedition round the world 1950-52, Scandinavian Science Press, 1956. [Google Scholar]
  • Xiao X., Wang P., Zeng X., Bartlett D.H., Wang F., Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west pacific deep-sea sediment. Int J Syst Evol Microbiol, 2007, 57, 60–65. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y., Nogi Y., Kato C., Liang Z., Rüger H.-J., De Kegel D., Glansdorff N., Moritella profunda sp. Nov. and Moritella abyssi sp. Nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol, 2003a, 53, 533–538. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y., Nogi Y., Kato C., Liang Z., Rüger H.-J., De Kegel D., Glansdorff N., Psychromonas profunda sp. Nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol, 2003b, 53, 527–532. [CrossRef] [PubMed] [Google Scholar]
  • Yayanos A.A., Dietz A.S., Vanboxtel R., Obligately barophilic bacterium from the Mariana trench. Proc Natl Acad Sci USA, 1981, 78, 5212–5215. [CrossRef] [Google Scholar]
  • Zobell C.E., The role of bacteria in the formation and transformation of petroleum hydrocarbons. Science, 1945, 102, 364–369. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.