Accès gratuit
Biologie Aujourd'hui
Volume 209, Numéro 1, 2015
Page(s) 63 - 85
Section Conférences Nobel 2013
Publié en ligne 26 juin 2015
  • Balch, W., Dunphy, W., Braell, W., and Rothman, J. (1984a) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell, 39, 405-416. [CrossRef] [PubMed] [Google Scholar]
  • Balch, W., Glick, B., and Rothman, J. (1984b) Sequential intermediates in the pathway of intercompartmental transport in a cell-free system. Cell, 39, 525-536. [CrossRef] [PubMed] [Google Scholar]
  • Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M., Ravazzola, M., Amherdt, M., and Schekman, R. (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell, 77, 895-907. [CrossRef] [PubMed] [Google Scholar]
  • Baumert, M., Maycox, P. R., Navone, F., De Camilli, P., and Jahn, R. (1989) Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J, 8, 379-84. [PubMed] [Google Scholar]
  • Bennett, M., and Scheller, R. (1993) The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci USA, 90, 2559-2563. [CrossRef] [Google Scholar]
  • Bennett, M., Calakos, N., and Scheller, R. (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science, 257, 255-259. [CrossRef] [PubMed] [Google Scholar]
  • Block, M., Glick, B., Wilcox, C., Wieland, F., and Rothman, J. (1988) Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci USA, 85, 7852–7856. [CrossRef] [Google Scholar]
  • Braell, W., Balch, W., Dobbertin, D., and Rothman, J. (1984) The glycoprotein that is transported between successive compartments of the Golgi in a cell-free system resides in stacks of cisternae. Cell, 39, 511-524. [CrossRef] [PubMed] [Google Scholar]
  • Clary, D., Griff, I., and Rothman, J. (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell, 61, 709-721. [CrossRef] [PubMed] [Google Scholar]
  • Elferink, L., Trimble, W., and Scheller, R. (1989) Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J Biol Chem, 264, 11061-11064. [PubMed] [Google Scholar]
  • Fries, E., and Rothman, J. (1980) Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc Natl Acad Sci USA, 77, 3870–3874. [CrossRef] [Google Scholar]
  • Fries, E., and Rothman, J. (1981) Transient activity of Golgi-like membranes as donors of vesicular stomatitis viral glycoprotein in vitro. J Cell Biol, 90, 697–704. [CrossRef] [PubMed] [Google Scholar]
  • Fukuda, R., McNew, J., Weber, T., Parlati, F., Engel, T., Nickel, W., Rothman, J., and Söllner, T. (2000) Functional architecture of an intracellular membrane t-SNARE. Nature, 407, 198-202. [CrossRef] [PubMed] [Google Scholar]
  • Geppert, M., Goda, Y., Hammer, R., Li, C., Rosahl, T., Stevens, C., and Südhof, T. (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell, 79, 717-27. [CrossRef] [PubMed] [Google Scholar]
  • Glick, B., and Rothman, J. (1987) A possible role for acylcoenzyme A in intracellular protein transport. Nature, 326, 309-312. [CrossRef] [PubMed] [Google Scholar]
  • Gao, Y., Zorman, S., Gundersen, G., Xi, Z., Ma, L., Sirinakis, G., Rothman, J., and Zhang, Y. (2012) Single Reconstituted Neuronal SNARE Complexes Zipper in Three Distinct Stages. Science, 337, 1340-1343. [CrossRef] [PubMed] [Google Scholar]
  • Hanson, P., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell, 90, 523-535. [CrossRef] [PubMed] [Google Scholar]
  • Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Südhof, T. C., and Niemann, H. (1994). Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J, 13, 5051-5061. [PubMed] [Google Scholar]
  • Inoue A., Obata K., Akagawa K. (1992) Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J Biol Chem, 267, 10613-10619. [PubMed] [Google Scholar]
  • Karatekin, E., Di Giovanni, J., Iborra, C., Coleman, J., O’Shaughnessy, B., Seagar, M., and Rothman, J. (2010) A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc Natl Acad Sci USA, 107, 3517-3521. [CrossRef] [Google Scholar]
  • Krebs, H. (1967) The Making of a Scientist. Nature, 215, 1441-1445. [CrossRef] [PubMed] [Google Scholar]
  • Kümmel, D., Krishnakumar, S., Radoff, D., Li, F., Giraudo, C., Pincet, F., Rothman, J., and Reinisch, K. (2011) Complexin Cross-links prefusion SNAREs into a Zig-Zag Array. Nat Struct Mol Biol, 18, 927-933. [CrossRef] [PubMed] [Google Scholar]
  • Malhotra, V., Orci, L., Glick, B., Block, M., and Rothman, J. (1988) Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell, 54, 221-227. [CrossRef] [PubMed] [Google Scholar]
  • Malhotra, V., Serafini, T., Orci, L., Shepherd, J., and Rothman, J. (1989) Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell, 58, 329-336. [CrossRef] [PubMed] [Google Scholar]
  • Mayer, A., Wickner, W., and Haas, A. (1996) Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can preceede docking and fusion of yeast vacuoles. Cell, 85, 83-94. [CrossRef] [PubMed] [Google Scholar]
  • McMahon H., Missler, M., Li, C., Südhof, T. (1995) Complexins: cytosolic proteins that regulate SNAP receptor function Cell, 83, 111-9. [CrossRef] [PubMed] [Google Scholar]
  • McNew, J., Parlati, F., Fukuda, R., Johnston, R., Paz, K., Paumet, F., Söllner T., and Rothman, J. (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature, 407, 153-159. [CrossRef] [PubMed] [Google Scholar]
  • Mélançon, P., Glick, B., Malhotra, V., Weidman, P., Serafini, T., Gleason, M., Orci, L., and Rothman, J. (1987) Involvement of GTPbinding “G” proteins in transport through the Golgi stack. Cell, 51, 1053-1062. [CrossRef] [PubMed] [Google Scholar]
  • Novick, P., Field, C., and Schekman, R. (1980) The identification of 23 complementation groups required for post-translocational events in the yeast secretory pathway. Cell, 21, 205-15. [CrossRef] [PubMed] [Google Scholar]
  • Orci, L., Glick, B., and Rothman, J. (1986) A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack. Cell, 46, 171–184. [CrossRef] [PubMed] [Google Scholar]
  • Orci, L., Malhotra, V., Amherdt, M., Serafini, T., and Rothman, J. (1989) Dissection of a single round of vesicular transport: Sequential intermediates for intercisternal movement in the Golgi stack. Cell, 56, 357-368. [CrossRef] [PubMed] [Google Scholar]
  • Orci, L., Palmer, D., Amherdt, M., and Rothman J. (1993) Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature, 364, 732-734. [CrossRef] [PubMed] [Google Scholar]
  • Ostermann, J., Orci, L., Tani, K., Amherdt, M., Ravazzola, M., Elazar, Z., and Rothman, J. (1993) Stepwise assembly of functionally active transport vesicles. Cell, 75, 1015-1025. [CrossRef] [PubMed] [Google Scholar]
  • Oyler, G., Higgins, G., Hart, R., Battenberg, E., Billingsley, M., Bloom, F., and Wilson, M. (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol, 109, 3039-3052. [CrossRef] [PubMed] [Google Scholar]
  • Palade, G. (1975) Intracellular aspects of the process of protein synthesis. Science, 189, 347-58. [CrossRef] [PubMed] [Google Scholar]
  • Parlati, F., McNew, J., Fukuda, R., Miller, R., Söllner, T., and Rothman, J. (2000) Topological restriction of SNARE-dependent membrane fusion. Nature, 407, 194-198. [CrossRef] [PubMed] [Google Scholar]
  • Parlati, F., Varlamov, O., Paz, K., McNew, J., Hurtado, D., Söllner, T., and Rothman, J. (2002) Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci USA, 99, 54424-54429. [CrossRef] [Google Scholar]
  • Paumet, F., Brügger, B., Parlati, F., McNew, J., Söllner, T., and Rothman, J. (2001) A t-SNARE of the endocytic pathway must be activated for fusion. J Cell Biol, 155, 961-968. [CrossRef] [PubMed] [Google Scholar]
  • Pearse, B. (1976) Clathrin: A unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Nat Acad Sci USA, 73, 1255-1259. [CrossRef] [Google Scholar]
  • Roth, T., and Porter, K. (1964) Yolk protein uptake in the oocyte of the mosquito Aedes Aegypti L., J Cell Biol, 20, 313-332. [CrossRef] [PubMed] [Google Scholar]
  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R., and Rothman, J. (1991) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: A novel role for a GTP-binding protein. Cell, 67, 239-253. [CrossRef] [PubMed] [Google Scholar]
  • Söllner T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. (1993a) SNAP receptors implicated in vesicle targeting, and fusion. Nature, 362, 318-324. [CrossRef] [PubMed] [Google Scholar]
  • Söllner, T., Bennett, M., Whiteheart, S., Scheller, R., and Rothman, J. (1993b) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell, 75, 409-418. [CrossRef] [PubMed] [Google Scholar]
  • Stamnes, M., and Rothman, J. (1993) The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell, 73, 999–1005. [CrossRef] [PubMed] [Google Scholar]
  • Sutton, R., Fasshauer, D., Jahn, R., and Brunger, A. (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature, 395, 347–353. [CrossRef] [PubMed] [Google Scholar]
  • Südhof, T., and Rothman, J. (2009) Membrane Fusion: Grappling with SNARE and SM Proteins. Science, 323, 474-477 [CrossRef] [PubMed] [Google Scholar]
  • Tanigawa, G., Orci, L., Amherdt, M., Ravazzola, M., Helms, J., and Rothman, J. (1993) Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol, 123, 1365-1371. [CrossRef] [PubMed] [Google Scholar]
  • Waters, M., Serafini, T., and Rothman, J. (1991) “Coatomer”: A cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature, 349, 248-251. [CrossRef] [PubMed] [Google Scholar]
  • Weber, T., Zemelman, B., McNew, J., Westermann, B., Gmachl, M., Parlati, F., Söllner, T., and Rothman, J. (1998) SNAREpins: Minimal machinery for membrane fusion. Cell, 92, 759-772. [CrossRef] [PubMed] [Google Scholar]
  • Weber, T., Parlati, F., McNew, J., Johnston, R., Westermann, B., Söllner, T., and Rothman, J. (2000) SNAREpins are functionally resistant to disruption by NSF and alphaSNAP. J Cell Biol, 149, 1063-1072. [CrossRef] [PubMed] [Google Scholar]
  • Weidman, P., Mélançon, P., Block, M., and Rothman, J. (1989) Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J Cell Biol, 108, 1589-1596. [CrossRef] [PubMed] [Google Scholar]
  • Wilson, D. W., Whiteheart, S. W., Wiedmann, M., Brunner, M., and Rothman, J. (1992). A multisubunit particle implicated in membrane fusion. J Cell Biol, 117, 531-538. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.