Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 1, 2015
Page(s) 35 - 61
Section Conférences Nobel 2013
DOI https://doi.org/10.1051/jbio/2015011
Publié en ligne 26 juin 2015
  • Antonny, B., Madden, D., Hamamoto, S., Orci, L., and Schekman, R. (2001) Dynamics of the COPII coat with GTP and stable analogues. Nature Cell Biol, 3, 531-537. [CrossRef] [Google Scholar]
  • Bacia, K., Kutai, E., Prinz, D., Meister, A., Daum, S., Glatte, D., Briggs, J.A.G., and Schekman, R. (2011) Multibudded tubules formed by COPII on artificial liposomes. Sci Rep, 1, 17. [CrossRef] [PubMed] [Google Scholar]
  • Baker, D., Hicke, L., Rexach, M., Schleyer, M., and Schekman, R. (1988) Reconstitution of Sec gene product-dependent intercompartmental protein transport. Cell, 54, 335-344. [CrossRef] [PubMed] [Google Scholar]
  • Barlowe, C., and Schekman, R. (1993) SEC12 encodes a guanine nucleotide exchange factor essential for transport vesicle formation from the ER. Nature, 365, 347-349. [CrossRef] [PubMed] [Google Scholar]
  • Barlowe, C., d’Enfert, C., and Schekman, R. (1993) Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J Biol Chem, 268, 873-879. [PubMed] [Google Scholar]
  • Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M.F., Ravazzola, M., Amherdt, M., and Schekman, R. (1994) COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell, 77, 895-907. [CrossRef] [PubMed] [Google Scholar]
  • Barry, J., and Alberts, B. (1972) In vitro complementation as an assay for new proteins required for bacteriophage T4 DNA replication: Purification of the complex specified by T4 genes 44 and 62. Proc Nat Acad Sci USA, 69, 2717-2721. [CrossRef] [Google Scholar]
  • Bednarek, S.Y., Ravazzola, M., Hosobuchi, M., Amherdt, M., Perrelet, A., Schekman, R., and Orci, L. (1995) COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell, 83, 1183-1196. [CrossRef] [PubMed] [Google Scholar]
  • Belden W.J., and Barlowe C. (1996) Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24, that is required for efficient endoplasmic reticulum to Golgi transport. J Biol Chem, 271, 26939-26946. [CrossRef] [PubMed] [Google Scholar]
  • Belden, W.J., and Barlowe, C. (2001). Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science, 294, 1528-1531. [CrossRef] [PubMed] [Google Scholar]
  • Benzer, S. (1957) The elementary units of heredity. In a symposium on the chemical basis of heredity, edited by W.D. McElroy and B. Glass. Baltimore: The Johns Hopkins Press, pp 70-133. [Google Scholar]
  • Bernstein, M., Hoffmann, W., Ammerer, G., and Schekman, R. (1985) Characterization of a gene product (Sec53p) required for protein assembly in the yeast endoplasmic reticulum. J Cell Biol, 101, 2374-2382. [CrossRef] [PubMed] [Google Scholar]
  • Bernstein, M., Kepes, F., and Schekman, R. (1989) SEC59 encodes a membrane protein required for core glycosylation in yeast. Mol Cell Biol, 9, 1191-1199. [PubMed] [Google Scholar]
  • Bi, X., Corpina, R. and Goldberg, J. (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII coat. Nature, 419, 271-277. [CrossRef] [PubMed] [Google Scholar]
  • Bi, X., Mancias, J.D., and Goldberg, J. (2007) Insights into COPII coat nucleation from the structure of Sec23–Sar1 complexed with the active fragment of Sec31. Dev Cell, 13, 635–645. [CrossRef] [PubMed] [Google Scholar]
  • Blobel, G. and Dobberstein B. (1975a) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol, 67, 835-851. [CrossRef] [PubMed] [Google Scholar]
  • Blobel G. and Dobberstein B. (1975b) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol, 67, 852–862. [CrossRef] [PubMed] [Google Scholar]
  • Boer P., Van Rijn H.J., Reinking A., and Seryn-Parvé E.P. (1975) Biosynthesis of acid phosphatase of baker’s yeast. Characterization of a protoplast-bound fraction containing precursors of the exo-enzyme. Biochim Biophys Acta, 377, 331–342. [CrossRef] [PubMed] [Google Scholar]
  • Böhni, P.C., Deshaies, R.J., and Schekman, R.W. (1988) SEC11 is required for signal peptide processing and yeast cell growth. J Cell Biol, 106, 1035-1042. [CrossRef] [PubMed] [Google Scholar]
  • Boyadjiev, S.A., Fromme, J.C., Ben, J., Chong, S.S., Nauta, C., Hur, D.J., Zhang, G., Hamamoto, S., Schekman, R., Ravazzola, M., Orci, L., and Eyaid, W. (2006) Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nature Gen, 38, 1192-1197. [CrossRef] [Google Scholar]
  • Brenner, S. (1974) The genetics of Cænorhabditis elegans. Genetics, 77, 71–94. [CrossRef] [PubMed] [Google Scholar]
  • Brutlag, D., Schekman, R.W., and Kornberg, A. (1971) A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci USA, 68, 2826. [CrossRef] [Google Scholar]
  • Byers, B., and Goetsch, L. Duplication of spindle plaques and integration of the yeast cell cycle. (1974) Cold Spring Harb Symp Quant Biol, 38, 123-131 [CrossRef] [PubMed] [Google Scholar]
  • Byers, B., and Goetsch, L. (1976) A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol, 69, 717-721. [CrossRef] [PubMed] [Google Scholar]
  • Cabib, E., and Bowers, B. (1971) Chitin and yeast budding. J Biol Chem, 246, 152-159. [PubMed] [Google Scholar]
  • Caldwell, S., Hill, K., and Cooper, A. (2001) Degradation of ER quality control substrates requires transport between the ER and Golgi. J Biol Chem, 276, 23296-23303. [CrossRef] [PubMed] [Google Scholar]
  • Campbell, J.L., and Schekman, R. (1997) Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc Natl Acad Sci USA, 94, 837-842. [CrossRef] [Google Scholar]
  • Chen, X.-Y,E., Baines, E., Yu, G., Sartor, M.A. Zhang, B., Yi, Z., Lin, J., Young, S.G., Schekman, R., and Ginsburg, D. (2013) SEC24A Deficiency Lowers Plasma Cholesterol through Reduced PCSK9 Secretion. Elife, April 9, 2, e00444. [Google Scholar]
  • Chirico, W.J., Waters, M.G., and Blobel, G. (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature, 332, 805-810. [CrossRef] [PubMed] [Google Scholar]
  • De Lucia, P., and Cairns, J. (1969) Isolation of an E. coli Strain with a Mutation affecting DNA Polymerase. Nature, 224, 1164-1166. [CrossRef] [PubMed] [Google Scholar]
  • De Waard, A., Paul, A., and Lehman, I.R. (1965) The structural gene for deoxyribonucleic acid polymerase in bacteriophages T4 and T5. Proc Natl Acad Sci USA, 54, 1241-1248. [CrossRef] [Google Scholar]
  • d’Enfert, C., Wuestehube, L.J., Lila, T., and Schekman, R. (1991) Sec12p-dependent membrane binding of the small GTP-binding protein Sar1p promotes formation of transport vesicles from the ER. J Cell Biol, 114, 663-670. [CrossRef] [PubMed] [Google Scholar]
  • Deshaies, R., and Schekman, R. (1987) A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J Cell Biol, 105, 633-645. [CrossRef] [PubMed] [Google Scholar]
  • Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A., and Schekman, R. (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, 332, 800-805. [CrossRef] [PubMed] [Google Scholar]
  • Eakle, K., Bernstein M., and Emr, S. (1988) Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product. Mol Cell Biol, 8, 4098-4109. [PubMed] [Google Scholar]
  • Edgar, R., and Wood, W., (1966) Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci USA, 55, 498-505. [CrossRef] [Google Scholar]
  • Emr, S.D., and Silhavy, T.J. (1980) Mutations affecting localization of an Escherichia coli outer membrane protein, the bacteriophage lambda receptor. J Mol Biol, 141, 63-90. [CrossRef] [PubMed] [Google Scholar]
  • Emr, S.D., Schauer, I., Hansen, W., Esmon, P., and Schekman, R. (1984) Invertase β-galactosidase hybrid proteins fail to be transported from the endoplasmic reticulum in yeast. Mol Cell Biol, 4, 2347-2356. [PubMed] [Google Scholar]
  • Epstein, R., Bolle, A., Steinberg, C., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgard, R., Susman, M., Denhardt, G., and Leilausis, A. (1963) Physiological Studies of Conditional Lethal Mutants of Bacteriophage T4D. Cold Spring Harb Symp Quant Biol, 28, 375-394 [CrossRef] [Google Scholar]
  • Esmon, B., Novick, P., and Schekman, R. (1981) Compartmentalized assembly of oligosaccharides on exported glycoproteins. Cell, 25, 451-460. [CrossRef] [PubMed] [Google Scholar]
  • Espenshade, P., Gimeno, R.E., Holzmacher, E., Teung, P., and Kaiser, C.A., (1995). Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol, 131, 311-324 [CrossRef] [PubMed] [Google Scholar]
  • Fangman, W., and Novick, A. (1968) Characterization of two bacterial mutants with temperature-sensitive synthesis of DNA. Genetics, 60, 1-17. [CrossRef] [PubMed] [Google Scholar]
  • Fath, S., Mancias, J.D., Bi, X., and Goldberg, J. (2007) Structure and organization of coat proteins in the COPII cage. Cell, 129, 1325-1336. [CrossRef] [PubMed] [Google Scholar]
  • Ferro-Novick, S., Novick, P., Field, C., and Schekman, R. (1984) Yeast secretory mutants that block the formation of active cell surface enzymes. J Cell Biol, 98, 35-43. [CrossRef] [PubMed] [Google Scholar]
  • Fries, E., and Rothman, J.E. (1980) Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc Natl Acad Sci USA, 77, 3870-3874. [CrossRef] [Google Scholar]
  • Fromme, J.C., Ravazzola, M., Hamamoto, S., Al-Balwi, M., Eyaid, W., Boyadjiev, S.A., Cosson, R., Schekman, R., and Orci, L. (2007) The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Developmental Cell, 13, 623-634. [CrossRef] [PubMed] [Google Scholar]
  • Futai, E., Hamamoto, S., Orci, L., and Schekman, R. (2004) GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. EMBO J, 23, 4146-4155. [CrossRef] [PubMed] [Google Scholar]
  • Gefter, M., Hirota, Y, Kornber, T., Wechsler, J., and Barnoux, C. (1971) Analysis of DNA polymerases II and III in mutants of Escherichia coli thermosensitive for DNA Synthesis. Proc Natl Acad Sci USA, 68, 3150-3153. [CrossRef] [Google Scholar]
  • Gengyo-Ando, K., Kamiya, Y., Yamanaka, A., Kodaira, I.K., Nishiwaki, K., Miwa, J., Hori, I., and Hosono, R. (1993). The C. elegans unc-18 gene encodes a protein expressed in motor neurons. Neuron, 11, 703-711. [CrossRef] [PubMed] [Google Scholar]
  • Gorlich, D., and Rapoport, T. (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell, 75, 615-630. [CrossRef] [PubMed] [Google Scholar]
  • Gorlich, D., Prehn, S., Hartmann, E., Kalies, K-U., and Rapoport, T. (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell, 71, 489-503 [CrossRef] [PubMed] [Google Scholar]
  • Goulian, M., and Kornberg, A. (1967) Enzymatic synthesis of DNA, XXIII, Synthesis of circular replicative form phage ϕX174 DNA. Proc Natl Acad Sci USA, 58, 1723-1730. [CrossRef] [Google Scholar]
  • Goulian, M, Kornberg, A., and Sinsheimer, R.L. (1967) Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage ϕX174 DNA. Proc Natl Acad Sci USA, 58, 2321-2328. [CrossRef] [Google Scholar]
  • Greenberg, G., Shelness, G., and Blobel, G. (1989) A subunit of the mammalian signal peptidase is homologous to the yeast SEC11 protein. J Biol Chem, 264, 15762-15765. [PubMed] [Google Scholar]
  • Griff, I.C., Schekman, R., Rothman, J.E., and Kaiser, C.A. (1992) The yeast SEC17 gene product is functionally equivalent to mammalian α-SNAP protein. J Biol Chem, 267, 12106-12115. [PubMed] [Google Scholar]
  • Groesch, M., Ruohola, H., Bacon, R., Rossi, G., and Ferro-Novick, S. (1990) Isolation of a functional vesicle intermediate that mediates ER-Golgi transport in yeast. J Cell Biol, 111, 45-53. [CrossRef] [PubMed] [Google Scholar]
  • Hansen W., Garcia P., and Walter P. (1986) In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor. Cell, 45, 397-406. [CrossRef] [PubMed] [Google Scholar]
  • Hartwell, L., Mortimer, R., Culotti, J., and Culotti, M. (1973) Genetic control of cell division cycle in yeast: Genetic analysis of cdc mutants. Genetics, 74, 267-286. [PubMed] [Google Scholar]
  • Haselbeck, A., and Schekman, R. (1986) Interorganelle transfer and glycosylation of yeast invertase in vitro. Proc Natl Acad Sci USA, 83, 2017-2021. [CrossRef] [Google Scholar]
  • Henry, S., Atkinson, K., Kolat, A., and Culbertson, M. (1977) Growth and metabolism of inositol-starved Saccharomyces cerevisia. J Bact, 130, 472-484. [Google Scholar]
  • Hicke, L., Yoshihisa, T., and Schekman, R. (1992) Sec23p and a novel 105 kD protein function as a multimeric complex to promote vesicle budding and protein transport from the ER. Mol Biol Cell, 3, 667-676. [CrossRef] [PubMed] [Google Scholar]
  • Hinnen, A., Hicks, J., and Fink, G. (1978) Transformation of yeast. Proc Natl Acad Sci USA, 75, 1929-1933. [CrossRef] [Google Scholar]
  • Hirano, H., Parkhouse, B., Nicholson, G., Lennox, E., and Singer, S.J., (1972) Distribution of saccharide residues on membrane fragments from a melanoma cell homogenate: Its implications for membrane biogenesis. Proc Natl Acad Sci USA, 69, 2945-2949. [CrossRef] [Google Scholar]
  • Hirota, Y., Ryter, A., and Jacob, F. (1968) Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol, 33, 677-693. [CrossRef] [PubMed] [Google Scholar]
  • Hosobuchi, M., Kreis, T., and Schekman, R. (1992) SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer. Nature, 360, 603-605. [CrossRef] [PubMed] [Google Scholar]
  • Huang, M., Weissman, J., Béraud, S., Luan, P., Wang, C., Chen, W., Aridor, M., Wilson, I., and Balch, W. (2001) Crystal structure of Sar1-GDP at 1.7 Å. J Cell Biol, 155, 937-948. [CrossRef] [PubMed] [Google Scholar]
  • Jin, L., Pahuja. K.B., Wickliffe, K.E., Gorur, A., Baumgartel, C., Schekman, R., and Rape, M. (2012) Ubiquitin-dependent regulation of COPII coat size and function. Nature, 482, 495-500. [CrossRef] [PubMed] [Google Scholar]
  • Josse, J., Kaiser, A.D., and Kornberg, A. (1961) Enzymatic Synthesis of Deoxyribonucleic Acid: VIII. Frequencies of the nearest neighbor base sequences in deoxyribonucleic acid. J Biol Chem, 236, 864-875. [PubMed] [Google Scholar]
  • Kaiser, C.A., and Schekman, R. (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell, 61, 723-733. [CrossRef] [PubMed] [Google Scholar]
  • Kelly, R., Atkinson, M., Huberman, J., and Kornberg, A. (1969) Excision of Thymine Dimers and Other Mismatched Sequences by DNA Polymerase of Escherichia coli. Nature, 224, 495-501. [CrossRef] [Google Scholar]
  • Kepes, F., and Schekman, R. (1988) The yeast SEC53 gene encodes phosphomannomutase. J Biol Chem, 263, 9155-9161. [PubMed] [Google Scholar]
  • Kim, J., Hamamoto, S., Ravazzola, M., Orci, L., and Schekman, R. (2005) Uncoupled packaging of amyloid precursor protein and presenilin 1 into COPII vesicles. J Biol Chem, 280, 7758-7768. [CrossRef] [PubMed] [Google Scholar]
  • Kornberg, A., Lehman, I.R., Bessman, M.J., and Simms, E.S. (1956) Enzymatic synthesis of desoxyribonucleic acid. Biochim Biophys Acta, 21, 197-198. [CrossRef] [PubMed] [Google Scholar]
  • Kornberg, T., and Gefter, M.L. (1970) DNA synthesis in cell-free extracts of a DNA polymerase-defective mutant. Biochem Biophys Res Commun, 40, 1348-1355. [CrossRef] [PubMed] [Google Scholar]
  • Kuehn, M., Schekman, R., and Ljungdahl, P. (1996) Amino acid permeases require COPII components and the ER resident membrane protein in Shr3p for packaging into transport vesicles in vitro. J Cell Biol, 135, 585-595. [CrossRef] [PubMed] [Google Scholar]
  • Kuehn, M.T., Herrmann, J.M., and Schekman, R. (1998) COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature, 391, 187-190. [CrossRef] [PubMed] [Google Scholar]
  • Kung, L.F., Pagant, S., Futai, E., D’Arcangelo, J.G., Buchanan, R., Dittmar, J.C., Reid, R.J.D., Rothstein, R., Hamamoto, S., Snapp, S., Schekman, R., and Miller, E.A. (2011) Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J, 31, 1014-1027. [CrossRef] [PubMed] [Google Scholar]
  • Lee, M. C, Orci, L., Hamamoto, S., Futai, E., Ravazzola, M., and Schekman, R. (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell, 122, 605-617. [CrossRef] [PubMed] [Google Scholar]
  • Lemmon, S., and Jones, E. (1987) Clathrin requirement for normal yeast growth. Science, 238, 504-509. [CrossRef] [PubMed] [Google Scholar]
  • Malhotra, V., Serafini, T., Orci, L., Shepherd, J.C., and Rothman, J.E. (1989) Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell, 58, 329-336. [CrossRef] [PubMed] [Google Scholar]
  • Malkus, P., Jiang, F., and Schekman, R. (2002) Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J Cell Biol, 159, 915-921. [CrossRef] [PubMed] [Google Scholar]
  • Martinez-Menarguez, J., Geuze, H., Slot, J., and Klumpermann, J. (1999) Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. J Cell Biol, 98, 81-90. [Google Scholar]
  • Matsuoka, K., Orci, L., Amherdt, M., Bednarek, S.Y., Hamamoto, S., Schekman, R., and Yeung, T. (1998) COPII-Coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell, 93, 263-275. [CrossRef] [PubMed] [Google Scholar]
  • Mélançon, P., Glick, B.S., Malhotra, V., Weidman, P.J., Serafini, T., Gleason, M.L., Orci, L., and Rothman, J.E. (1987) Involvement of GTP-binding “G” proteins in transport through the Golgi stack. Cell, 51, 1053-1062. [CrossRef] [PubMed] [Google Scholar]
  • Merte, J., Jensen, D., Wright, K., Sarsfield, S., Wang, Y., Schekman, R., and Ginty, D.D. (2010) Sec24b selectively sorts Vang12 to regulate planar cell polarity during neural tube closure. Nature Cell Biol, 12, 41-46. [CrossRef] [Google Scholar]
  • Miller, E., Antonny, B., Hamamoto, S., and Schekman, R. (2002) Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J, 21, 6105-6113. [CrossRef] [PubMed] [Google Scholar]
  • Miller, E., Beilharz, T.H., Malkus, P.N., Lee, M.C.S., Hamamoto, S., Orci, L., and Schekman, R. (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell, 114, 1-20. [CrossRef] [PubMed] [Google Scholar]
  • Mosseseva, E., Bickford, L.C., and Goldberg, J., (2003) SNARE selectivity of the COPII coat. Cell, 114, 483-495. [CrossRef] [PubMed] [Google Scholar]
  • Moussalli, M., Pipe, S.W., Hauri, H.P., Nichols, W.C., Ginsburg, D., and Kaufman, R.J. (1999) Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J Biol Chem, 12, 32539-32542. [CrossRef] [Google Scholar]
  • Nakano, A., and Muramatsu, M. (1989) A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol, 109, 2677-2691. [CrossRef] [PubMed] [Google Scholar]
  • Nakano, A., Brada, D., and Schekman, R. (1988) A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J Cell Biol, 107, 851-863. [CrossRef] [PubMed] [Google Scholar]
  • Nichols, W.C., Seligsohn, U., Zivelin, A., Terry, V.H., Hertel, C.E., Wheatley, M.A., Moussalli, M.J., Hauri, H.P., Ciavarella, N., Kaufman, R.J., and Ginsburg, D. (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell, 93, 61-70. [CrossRef] [PubMed] [Google Scholar]
  • Nishimura, N., and Balch, W. (1997) A di-acidic signal required for selective export from the endoplasmic reticulum. Science, 277, 556-558. [CrossRef] [PubMed] [Google Scholar]
  • Novick, P., and Schekman, R. (1979) Secretion and cell surface growth are blocked in a temperature sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 76, 1858-1862. [CrossRef] [Google Scholar]
  • Novick, P., and Schekman, R. (1983) Export of major cell surface proteins is blocked in yeast secretory mutants. J Cell Biol, 96, 541-547. [CrossRef] [PubMed] [Google Scholar]
  • Novick, P., and Botstein, D. (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell, 40, 405-416. [CrossRef] [PubMed] [Google Scholar]
  • Novick, P., Field, C., and Schekman, R. (1980) The identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell, 21, 205-215. [CrossRef] [PubMed] [Google Scholar]
  • Novick, P., Ferro, S., and Schekman, R. (1981) Order of events in the yeast secretory pathway. Cell, 25, 461-469. [CrossRef] [PubMed] [Google Scholar]
  • Oliver, D.B., and Beckwith, J. (1981) E. coli mutant pleiotropically defective in the export of secreted proteins. Cell, 25, 765-772. [CrossRef] [PubMed] [Google Scholar]
  • Olivera, B., and Bonhoeffer, F. (1972) Replication of ϕX174 DNA by polA- in vitro. Proc Natl Acad Sci USA, 69, 25-29. [CrossRef] [Google Scholar]
  • Orci, L., Ravazzola, M., Storch, M-J., Anderson, R., Vassalli, J-D., and Perrelet, A. (1987) Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell, 49, 865-868. [CrossRef] [PubMed] [Google Scholar]
  • Orci, L., Ravazzola, M., Meda, P., Holcomb, C., Moore, H-P., Hicke, L., and Schekman, R. (1991) Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc Natl Acad Sci USA, 88, 8611-8615. [CrossRef] [Google Scholar]
  • Palade, G. (1975) Intracellular aspects of protein secretion. Science, 189, 347-358. [CrossRef] [PubMed] [Google Scholar]
  • Payne, G.S., and Schekman, R. (1985) A test of clathrin function in protein secretion and cell growth. Science, 230, 1009-1014. [CrossRef] [PubMed] [Google Scholar]
  • Payne, G.S., and Schekman, R. (1989) Clathrin: A role in the intracellular retention of a Golgi membrane protein. Science, 245, 1358-1365. [CrossRef] [PubMed] [Google Scholar]
  • Pearse, B. (1976) Clathrin a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA, 73, 1255-1259. [Google Scholar]
  • Pelham, H. (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 46, 959-961. [CrossRef] [PubMed] [Google Scholar]
  • Pryer, N.K., Salama, N.R., Schekman, R., and Kaiser, C.A. (1993) Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J Cell Biol, 120, 865-875. [CrossRef] [PubMed] [Google Scholar]
  • Redman, C., and Sabatini, D. (1966) Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci USA, 56, 608-615. [CrossRef] [Google Scholar]
  • Redman, C, Siekevitz, P., and Palade, G. (1966) Synthesis and Transfer of Amylase in Pigeon Pancreatic Microsomes. J Biol Chem, 241, 1150-1158. [PubMed] [Google Scholar]
  • Rexach, M., and Schekman, R. (1991) Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. J Cell Biol, 114, 219-229. [CrossRef] [PubMed] [Google Scholar]
  • Roberg, K., Crotwell, P., Espenshade, R., Gimeno, C., and Kaiser, C. (1999) LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol, 145, 659-672. [CrossRef] [PubMed] [Google Scholar]
  • Roth, T., and Porter, K., (1964) Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J Cell Biol, 20, 313-331. [CrossRef] [PubMed] [Google Scholar]
  • Rothblatt, J.A., Deshaies, R.J., Sanders, S., Daum, G., and Schekman, R. (1989) Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J Cell Biol, 109, 2641-2652. [CrossRef] [PubMed] [Google Scholar]
  • Rothman, J., and Fine, R. (1980) Coated vesicles transport newly-synthesized membrane glycoproteins to plasma membrane in two successive stages. Proc Natl Acad Sci USA, 77, 280-284. [Google Scholar]
  • Ruohola, H., Kabcenell, A., and Ferro-Novick, S. (1988) Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: The acceptor Golgi compartment is defective in the sec23 mutant. J Cell Biol, 107, 1465-1476. [CrossRef] [PubMed] [Google Scholar]
  • Salama, N.R., Yeung, T., and Schekman, R. (1993) The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J, 12, 4073-4082. [PubMed] [Google Scholar]
  • Salminen, A., and Novick, P.J. (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell, 49, 527-538. [CrossRef] [PubMed] [Google Scholar]
  • Schauer, I., Emr, S., Gross, C., and Schekman, R. (1985) Invertase signal and mature sequence substitutions that delay intercompartmental transport of active enzyme. J Cell Biol, 100, 1664-1675. [CrossRef] [PubMed] [Google Scholar]
  • Schekman, R., and Singer, S.J. (1976) Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal humans but not adults. Proc Natl Acad Sci USA, 73, 4075-4079. [CrossRef] [Google Scholar]
  • Schekman, R., and Brawley, V. (1979) Localized deposition of chitin on the yeast cell surface in response to mating pheromone. Proc Natl Acad Sci USA, 76, 645-649. [CrossRef] [Google Scholar]
  • Schekman, R.W., Wickner, W., Westergaard, O., Brutlag, D., Geider, K., Bertsch, L.L., and Kornberg, A. (1972) Initiation of DNA synthesis: synthesis of ϕX174 replicative form requires RNA synthesis resistant to rifampicin. Proc Natl Acad Sci USA, 69, 2691-2695. [CrossRef] [Google Scholar]
  • Schekman, R., Weiner, A., and Kornberg, A. (1974) Multienzyme systems of DNA replication. Science, 186, 987-993. [CrossRef] [PubMed] [Google Scholar]
  • Scott, J.H., and Schekman, R. (1980) Lyticase: Endoglucanase and protease activities that act together in yeast cell lysis. J Bact, 142, 414-423. [Google Scholar]
  • Semenza, J., Hardwick, K., Dean, N., and Pelham, H. (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of ER luminal proteins from the secretory pathway. Cell, 61, 1349-1357. [CrossRef] [PubMed] [Google Scholar]
  • Sheetz, M., and Singer, S.J. (1974) Biological membranes as bilayer couples. A mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA, 71, 4457-4461. [CrossRef] [Google Scholar]
  • Shiba, K., Ito, K., Yura, T., Cerretti, D.P. (1984) A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: isolation and characterization of a new temperature-sensitive secY mutant. EMBO J, 3, 631-635. [PubMed] [Google Scholar]
  • Shimoni, Y., Kurihara, T., Ravazzola, M., Amherdt, M., Orci, L., and Schekman, R. (2000) Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J Cell Biol, 151, 973-984. [CrossRef] [PubMed] [Google Scholar]
  • Silhavy, T.J., Casadaban, M.J., Shuman, H.A., and Beckwith, J.R. (1976) Conversion of beta-galactosidase to a membrane-bound state by gene fusion. Proc Natl Acad Sci USA, 73, 3423-3427. [CrossRef] [Google Scholar]
  • Singer, S.J., and Nicholson, G. (1972) The fluid mosaic model of membrane structure. Science, 175, 720-731. [CrossRef] [PubMed] [Google Scholar]
  • Springer, S., and Schekman, R. (1998) Nucleation of COPII vesicular coat complex by ER to Golgi v-SNAREs. Science, 281, 698-700. [CrossRef] [PubMed] [Google Scholar]
  • Springer, S., Spang, A., and Schekman, R. (1999) A primer on vesicle budding. Cell, 97, 145-148. [CrossRef] [PubMed] [Google Scholar]
  • Stagg, S.M., Gürkan, C., Fowler, D.M., LaPointe, P., Foss, T.R., Potter, C.S., Carragher, B., and Balch, W.E., (2006) Structure of the Sec13/31 COPII coat cage. Nature, 439, 234-238. [CrossRef] [PubMed] [Google Scholar]
  • Stevens, T., Esmon, B., and Schekman, R. (1982) Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell, 30, 439-448. [CrossRef] [PubMed] [Google Scholar]
  • Stirling, C.A., Rothblatt, J., Hosobuchi, M., Deshaies, R., and Schekman, R. (1992) Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol Biol Cell, 3, 129-142. [CrossRef] [PubMed] [Google Scholar]
  • Supek, F., Madden, D.T., Hamamoto, S., Orci, L., and Schekman, R. (2002) Sec16p potentiates the action of COPII proteins to bud transport vesicles. J Cell Biol, 158, 1029-1038. [CrossRef] [PubMed] [Google Scholar]
  • Thor, F., Gautschi, M., Geiger, R., and Helenius, A. (2009) Bulk flow revisited: Transport of a soluble protein in the secretory pathway. Traffic, 10, 1819-1830. [CrossRef] [PubMed] [Google Scholar]
  • Tokuyasu, K. (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol, 57, 551-565. [CrossRef] [PubMed] [Google Scholar]
  • Valenzuela, P., Medina, M, Rutter, W., Ammerer, G., and Hall, B. (1982) Synthesis and assembly of hepatitis B surface antigen particles in yeast. Nature, 298, 347-350. [CrossRef] [PubMed] [Google Scholar]
  • Wansleeben, C., Feitsma, H., Montcouquiol, M., Kroon, C., Cuppen, E., and Meljlink, F. (2010) Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b. Development, 137, 1067-1073. [CrossRef] [PubMed] [Google Scholar]
  • Watson, J.D. (1966) The Molecular Biology of the Gene. W.A. Benjamin, New York. [Google Scholar]
  • Wickner, W., Brutlag, D., Schekman, R., and Kornberg, A. (1972) RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc Natl Acad Sci USA, 69, 965-969. [CrossRef] [Google Scholar]
  • Wieland, F., Gleason, M., Serafini, T., and Rothman, J. (1987) The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell, 50, 289-300. [CrossRef] [PubMed] [Google Scholar]
  • Wilson, D.W., Wilcox, C.A., Flynn, G.C., Chen, E., Kuang, W.J., Henzel, W.J., Block, M.R., Ullrich, A., and Rothman, J.E. (1989) A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature, 339, 355-359. [CrossRef] [PubMed] [Google Scholar]
  • Wu, J., and Mlodzik, M. (2009) A quest for the mechanism regulating global planar cell polarity. Trends Cell Biol, 19, 295-305. [CrossRef] [PubMed] [Google Scholar]
  • Yeung, T., Barlowe, C., and Schekman, R. (1995) Uncoupled packaging of targeting and cargo molecules during transport vesicle budding from the endoplasmic reticulum. J Biol Chem, 270, 30567-30570. [CrossRef] [PubMed] [Google Scholar]
  • Yoshihisa, T., Barlowe, C., and Schekman, R. (1993) Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science, 259, 1466-1468. [CrossRef] [PubMed] [Google Scholar]
  • Zanetti, G., Pahuja, K. B, Studer, S., Shim, S., and Schekman, R. (2011) COPII and the regulation of protein sorting in mammals. Nature Cell Biol, 14, 20-28. [CrossRef] [Google Scholar]
  • Zanetti, G., Prinz, S., Daum, S., Meister, A., Schekman, R., Bacia, K., and Briggs, J.A.G. (2013) The structure of the COPII coat assembled on membranes. Elife, Sep 17, 2, e00951. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.