Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 1, 2015
Page(s) 3 - 33
Section Conférences Nobel 2013
DOI https://doi.org/10.1051/jbio/2015012
Publié en ligne 26 juin 2015
  • Acuna, C., Guo, Q., Burre, J., Sharma, M., Sun, J., and Südhof, T.C. (2014). Microsecond Dissection of Neurotransmitter Release: SNARE-Complex Assembly Dictates Speed and Ca2+-Sensitivity. Neuron, 82, 1088-1100. [CrossRef] [PubMed]
  • Ahmad, M., Polepalli, J.S., Goswami, D., Yang, X., Kaeser-Woo, Y.J., Südhof, T.C., and Malenka, R.C. (2012). Postsynaptic Complexin Controls AMPA Receptor Exocytosis During LTP. Neuron, 73, 260-267. [CrossRef] [PubMed]
  • Augustin, I., Rosenmund, C., Südhof, T.C., and Brose, N. (1999). Munc-13 is essential for fusion competence of glutamatergic synaptic vesicles. Nature, 400, 457-461. [CrossRef] [PubMed]
  • Bacaj, T., Wu, D., Yang, X., Morishita, W., Zhou, P., Xu, W., Malenka, R.C., and Südhof, T.C. (2013). Synaptotagmin-1 and -7 Trigger Synchronous and Asynchronous Phases of Neurotransmitter Release. Neuron, 80, 947-959. [CrossRef] [PubMed]
  • Balch, W.E., Dunphy, W.G., Braell, W.A., and Rothman, J.E. (1984). Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell, 39, 405-416. [CrossRef]
  • Betz, A., Ashery, U., Rickmann, M., Augustin, I., Neher, E., Südhof, T.C., Rettig, J., and Brose, N. (1998). Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron, 21, 123-36. [CrossRef] [MathSciNet] [PubMed]
  • Betz, A., Thakur, P., Junge, H.J., Ashery, U., Rhee, J.S., Scheuss, V., Rosenmund, C., Rettig, J. and Brose, N. (2001). Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron, 30, 183-196. [CrossRef] [PubMed]
  • Blasi, J., Chapman, E.R., Yamasaki, S., Binz, T., Niemann, H., and Jahn, R. (1993a). Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J, 12, 4821-4828. [PubMed]
  • Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., Südhof, T.C., Niemann, H., and Jahn, R. (1993b). Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature, 365, 160-163. [CrossRef] [PubMed]
  • Bollmann, J.H., Sakmann, B., and Borst, J.G. (2000). Calcium sensitivity of glutamate release in a calyx-type terminal. Science, 289, 953-957. [CrossRef] [PubMed]
  • Borst, J.G., and Sakmann, B. (1996). Calcium influx and transmitter release in a fast CNS synapse. Nature, 383, 431-434. [CrossRef] [PubMed]
  • Brenner, S. (1974). The genetics of Cænorhabditis elegans. Genetics, 77, 71-94. [PubMed]
  • Brose, N., Petrenko, A.G., Südhof, T.C., and Jahn, R. (1992). Synaptotagmin: A Ca2+-sensor on the synaptic vesicle surface. Science, 256, 1021-1025. [CrossRef] [PubMed]
  • Burré, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., and Südhof, T.C. (2010). α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro. Science, 329, 1663-1667. [CrossRef] [PubMed]
  • Cao, P., Maximov, A., and Südhof, T.C. (2011). Activity-Dependent IGF-1 Exocytosis is Controlled by the Ca2+-Sensor Synaptotagmin-10. Cell, 145, 300-311. [CrossRef]
  • Cao, P., Yang, X., and Südhof, T.C. (2013). Complexin Activates Exocytosis of Distinct Secretory Vesicles Controlled by Different Synaptotagmins. J Neurosci, 33, 1714-1727. [CrossRef] [PubMed]
  • Carr, C.M., Grote, E., Munson, M., Hughson, F.M., and Novick, P.J. (1999). Sec1p binds to SNARE complexes and concentrates at sites of secretion. J Cell Biol, 146, 333-344. [CrossRef] [MathSciNet] [PubMed]
  • Ceccarelli, B., Hurlbut, W.P., and Mauro A. (1973). Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol, 57, 499–524. [CrossRef] [PubMed]
  • Chandra, S., Gallardo, G., Fernández-Chacón, R., Schlüter, O.M., and Südhof, T.C., (2005). α-Synuclein Cooperates with CSPα in Preventing Neurodegeneration. Cell, 123, 383-396. [CrossRef]
  • Chapman, E.R., Hanson, P.I., An, S., and Jahn, R. (1995). Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem, 270, 23667-23671. [CrossRef] [PubMed]
  • Chen, X., Tomchick, D.R., Kovrigin, E., Araç, D., Machius, M., Südhof, T.C., and Rizo, J. (2002). Three-dimensional structure of the complexin/SNARE complex. Neuron, 33, 397-409. [CrossRef] [PubMed]
  • Clary, D.O., Griff, I.C., and Rothman, J.E., (1990). SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell, 61, 709-721. [CrossRef] [PubMed]
  • Coussens, L., Parker, P.J., Rhee, L., Yang-Feng, T.L., Chen, E., Waterfield, M.D., Francke, U., and Ullrich, A. (1986). Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 233, 859-866. [CrossRef] [PubMed]
  • Corbalan-Garcia, S., and Gómez-Fernández, J.C. (2014). Signaling through C2 domains: More than one lipid target. Biochim Biophys Acta, 1838, 1536-1547. [CrossRef] [PubMed]
  • Davletov, B.A., and Südhof, T.C. (1993). A single C2-domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid-binding. J Biol Chem, 268, 26386-26390. [PubMed]
  • Davletov, B.A., and Südhof, T.C. (1994). Ca2+-dependent conformational change in synaptotagmin I. J Biol Chem, 269, 28547-28550. [PubMed]
  • Deák, F., Shin, O.H., Tang, J., Hanson, P., Ubach, J., Jahn, R., Rizo, J., Kavalali, E.T., and Südhof, T.C. (2006). Rabphilin Regulates SNARE-Dependent Re-Priming of Synaptic Vesicles for Fusion. EMBO J, 25, 2856-2866. [CrossRef] [PubMed]
  • de Wit, H., Walter, A.M., Milosevic, I., Gulyás-Kovács, A., Riedel, D., Sørensen, J.B., and Verhage, M. (2009). Synaptotagmin-1 docks secretory vesicles to Syntaxin-1/SNAP-25 acceptor complexes. Cell, 138, 935-946. [CrossRef]
  • Deng, L., Kaeser, P.S., Xu, W., and Südhof, T.C. (2011). RIM Proteins Activate Vesicle Priming by Reversing Auto-Inhibitory Homodimerization of Munc13. Neuron, 69, 317-331. [CrossRef] [PubMed]
  • DiAntonio, A., Parfitt, K.D., and Schwarz, T.L. (1993). Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell, 73, 1281-1290. [CrossRef]
  • Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Südhof, T.C., and Rizo, J. (1999). A conformational switch in syntaxin during exocytosis. EMBO J, 18, 4372-4382. [CrossRef] [PubMed]
  • Dulubova, I., Yamaguchi, T., Gao, Y., Min, S.W., Huryeva, I., Südhof, T.C., and Rizo, J. (2002). How Tlg2p/syntaxin16 ‘snares’ Vps45. EMBO J, 21, 3620-3631. [CrossRef] [PubMed]
  • Dulubova, I., Lou, X., Lu, J., Huryeva, I., Alam, A., Schneggenburger, R., Südhof, T.C., and Rizo, J. (2005). A Munc13/RIM/Rab3 Tripartite Complex: From Priming to Plasticity? EMBO J, 24, 2839-2850. [CrossRef] [PubMed]
  • Dulubova, I., Khvotchev, M., Südhof, T.C., and Rizo, J. (2007). Munc18-1 Binds Directly to the Neuronal SNARE Complex. Proc Natl Acad Sci USA, 104, 2697-2702. [CrossRef]
  • Fenster, S.D., Chung, W.J., Zhai, R., Cases-Langhoff, C., Voss, B., Garner, A.M., Kaempf, U., Kindler, S., Gundelfinger, E.D., and Garner, C.C. (2000). Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron, 25, 203-214. [CrossRef] [PubMed]
  • Fernandez, I., Ubach, J., Dulubova, I., Zhang, X., Südhof, T.C., and Rizo, J. (1998). Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell, 94, 841-849. [CrossRef]
  • Fernandez, I., Araç, D., Ubach, J., Gerber, S.H., Shin, O., Gao, Y., Anderson, R.G., Südhof, T.C. and Rizo, J. (2001). Three-dimensional structure of the synaptotagmin 1 C2B-domain: Synaptotagmin 1 as a phospholipid binding machine. Neuron, 32, 1057-1069. [CrossRef] [PubMed]
  • Fernández-Chacón, R., and Südhof, T.C. (2000). Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J Neurosci, 20, 7941–7950. [PubMed]
  • Fernández-Chacón, R., Königstorfer, A., Gerber, S.H., García, J., Matos, M.F., Stevens, C.F., Brose, N., Rizo, J., Rosenmund, C., and Südhof, T.C. (2001). Synaptotagmin I functions as a Ca2+-regulator of release probability. Nature, 410, 41-49. [CrossRef] [PubMed]
  • Fernández-Chacón, R., Wölfel, M., Nishimune, H., Tabares, L., Schmitz, F., Castellano-Muñoz, M., Rosenmund, C., Montesinos, M.L., Sanes, J.R., Schneggenburger, R., and Südhof, T.C. (2004). The synaptic vesicle protein CSPα prevents presynaptic degeneration. Neuron, 42, 237-251. [CrossRef] [PubMed]
  • Forsythe, I.D. (1994). Direct patch recording from identified presynaptic terminals mediatingglutamatergic EPSCs in the rat CNS, in vitro. J Physiol, 479, 381-387. [CrossRef] [PubMed]
  • Garcia, E.P., Gatti, E., Butler, M., Burton, J., and De Camilli, P. (1994). A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci USA, 91, 2003-2007. [CrossRef]
  • Geppert, M., Archer, B.T. III, and Südhof, T.C. (1991). Synaptotagmin II: a novel differentially distributed form of synaptotagmin. J Biol Chem, 266, 13548-13552. [PubMed]
  • Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F., and Südhof, T.C. (1994a). Synaptotagmin I: A major Ca2+-sensor for transmitter releaseat a central synapse. Cell, 79, 717-727. [CrossRef]
  • Geppert, M., Bolshakov, V.Y., Siegelbaum, S.A., Takei, K., De Camilli, P., Hammer, R.E., and Südhof, T.C. (1994b). The role of Rab3A in neurotransmitter release. Nature, 369, 493-497. [CrossRef] [PubMed]
  • Gerber, S.H., Rah, J.C., Min, S.W., Liu X, de Wit, H., Dulubova, I., Meyer, A.C., Rizo, J., Arancillo, M., Hammer, R.E., Verhage, M., Rosenmund, C., and Südhof, T.C. (2008). Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion. Science, 321, 1507-1510. [CrossRef] [PubMed]
  • Giraudo, C.G., Eng, W.S., Melia, T.J., and Rothman, J.E. (2006). A clamping mechanism involved in SNARE-dependent exocytosis. Science, 313, 676-680. [CrossRef] [PubMed]
  • Gracheva, E.O., Hadwiger, G., Nonet, M.L., and Richmond, J.E. (2008). Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett, 444, 137-142. [CrossRef] [PubMed]
  • Graf, E.R., Valakh V, Wright, C.M., Wu, C, Liu, Z., Zhang, Y.Q., and DiAntonio, A. (2012). RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular junction. J Neurosci, 32, 16586-16596. [CrossRef] [PubMed]
  • Grote, E., Carr, C.M., and Novick, P.J. (2000). Ordering the final events in yeast exocytosis. J Cell Biol, 151, 439-452. [CrossRef] [PubMed]
  • Grumelli, C., Verderio, C., Pozzi, D., Rossetto, O., Montecucco, C., and Matteoli, M., (2005). Internalization and mechanism of action of clostridial toxins in neurons. Neurotoxicology, 26, 761-767. [CrossRef] [PubMed]
  • Gundersen, C.B., Mastrogiacomo, A, Faull, K., and Umbach, J.A. (1994). Extensive lipidation of a Torpedo cysteine string protein. J Biol Chem, 269, 19197-19199. [PubMed]
  • Gustavsson, N., Lao, Y., Maximov, A., Chuang, J.C., Kostromina E., Repa, J.J., Li, C, Radda, G.K., Südhof, T.C., and Han, W. (2008). Impaired insulin secretion and glucose intolerance in Synaptotagmin-7 null mutant mice. Proc Natl Acad Sci USA, 105, 3992-3997. [CrossRef]
  • Gustavsson, N., Wei, S.H., Hoang, D.N., Lao, Y., Zhang, Q., Radda, G.K., Rorsman, P., Südhof, T.C., and Han, W. (2009). Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+-induced glucagon exocytosis in pancreas. J Physiol, 587, 1169-1178. [CrossRef] [MathSciNet] [PubMed]
  • Han, Y., Kaeser, P.S., Südhof, T.C., and Schneggenburger, R. (2011). RIM determines Ca2+-channel density and vesicle docking at the presynaptic active zone. Neuron, 69, 304-316. [CrossRef] [PubMed]
  • Hanson, P.I., Roth, R, Morisaki, H, Jahn, R., and Heuser, J.E. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell, 90, 523-535. [CrossRef]
  • Harrison, S.D., Broadie, K., van de Goor, J., and Rubin, G.M. (1994). Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron, 13, 555-566. [CrossRef] [PubMed]
  • Hata, Y., Slaughter, C.A., and Südhof, T.C. (1993). Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature, 366, 347-351. [CrossRef] [PubMed]
  • Hata, Y., Butz, S., Sudhof, T.C. (1996) CASK: A novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 16, 2488-2494. [PubMed]
  • Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Südhof, T.C., and Niemann, H. (1994). Synaptic vesicle membrane fusion complex: Action of clostridial neurotoxins on assembly. EMBO J, 13, 5051-5061. [PubMed]
  • Heuser, J.E., and Reese, T.S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol, 57, 315-344. [CrossRef] [PubMed]
  • Huntwork, S., and Littleton, J.T. (2007). A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci, 10, 1235-1237. [CrossRef] [PubMed]
  • Ishizuka, T., Saisu, H., Odani, S., and Abe, T. (1995). Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem Biophys Res Commun, 213, 1107-1114. [CrossRef] [PubMed]
  • Janz, R., Hofmann, K. and Südhof, T.C. (1998). SVOP, an evolutionarily conserved synaptic vesicle protein, suggests novel transport functions of synaptic vesicles. J Neurosci, 18, 9269-9281. [PubMed]
  • Janz, R., Südhof, T.C., Hammer, R.E., Unni, V., Siegelbaum, S.A., and Bolshakov, V.Y. (1999). Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron, 24, 687-700. [CrossRef] [PubMed]
  • Katz, B. (1969). The Release of Neural Transmitter Substances. Liverpool, Liverpool Univ. Press.
  • Kaeser, P.S., Deng, L., Wang, Y., Dulubova, I., Liu, X., Rizo, J., and Südhof, T.C. (2011). RIM proteins tether Ca2+-channels to presynaptic active zones via a direct PDZ-domain interaction. Cell, 144, 282-295. [CrossRef]
  • Kaeser, P.S., Deng, L, Fan, M., and Südhof, T.C. (2012). RIM Genes Differentially Contribute to Organizing Presynaptic Release Sites. Proc Natl Acad Sci USA, 109, 11830-11835. [CrossRef]
  • Kaeser-Woo, Y.J., Yang, X., and Südhof, T.C. (2012). C-terminal Complexin Sequence is Selectively Required for Clamping and Priming but Not for Ca2+-Triggering of Synaptic Exocytosis. J Neurosci, 32, 2877-2885. [CrossRef] [PubMed]
  • Khvotchev, M., Dulubova, I., Sun, J., Dai, H., Rizo, J., and Südhof, T.C. (2007). Dual Modes of Munc18-1/SNARE Interactions Are Coupled by Functionally Critical Binding to Syntaxin-1 N-terminus. J Neurosci, 27, 12147-12155. [CrossRef] [PubMed]
  • Koushika, S.P., Richmond, J.E., Hadwiger, G., Weimer, R.M., Jorgensen, EM. and Nonet, M.L. (2001). A post-docking role for active zone protein Rim. Nat Neurosci, 4, 997-1005. [CrossRef] [PubMed]
  • Lee, J.O., Yang, H., Georgescu, M.M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J.E., Pandolfi, P., and Pavletich, N.P. (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99, 323-334. [CrossRef] [PubMed]
  • Li, C, Ullrich, B, Zhang, J.Z., Anderson, R.G., Brose, N., and Südhof, T.C. (1995a) Ca2+-dependent and Ca2+-independent activities of neural and non neuronal synaptotagmins. Nature, 375, 594-599. [CrossRef] [PubMed]
  • Li, C., Davletov, B.A., and Südhof, T.C. (1995b). Distinct Ca2+- and Sr2+-binding properties of synaptotagmins: definition of candidate Ca2+-sensors for the fast and slow components of neurotransmitter release. J Biol Chem, 270, 24898-24902. [CrossRef] [PubMed]
  • Lin, R.C., and Scheller, R.H. (1997). Structural organization of the synaptic exocytosis core complex. Neuron, 19, 1087-1094. [CrossRef] [PubMed]
  • Link, E., Edelmann, L., Chou, J.H., Binz, T., Yamasaki, S., Eisel, U., Baumert, M., Südhof, T.C., Niemann, H., and Jahn, R. (1992). Tetanus toxin action: Inhibition of neurotransmitter release linked to synaptobrevin poteolysis. Biochem Biophys Res Comm, 189, 1017-1023. [CrossRef]
  • Lipstein, N., Sakaba, T., Cooper, B.H., Lin, K.H., Strenzke, N., Ashery, U., Rhee, J.S., Taschenberger, H., Neher, E., and Brose, N. (2013). Dynamic control of synaptic vesicle replenishment and short term plasticity by Ca2+-calmodulin-Munc13-1 signaling. Neuron, 79, 82-96. [CrossRef] [MathSciNet] [PubMed]
  • Littleton, J.T., Stern, M., Schulze, K., Perin, M., and Bellen, H.J. (1993). Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. Cell, 74, 1125-1134. [CrossRef]
  • Liu, K.S., Siebert, M., Mertel, S., Knoche, E., Wegener, S., Wichmann, C., Matkovic, T., Muhammad, K., Depner, H., Mettke, C., Bückers, J., Hell, S.W., Müller, M., Davis, G.W., Schmitz, D., and Sigrist, S.J. (2011). RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science, 334, 1565-1569. [CrossRef] [PubMed]
  • Lu, J., Machius, M., Dulubova, I., Dai, H., Südhof, T.C., Tomchick, D.R., and Rizo, J. (2006). Structural Basis for a Munc13-1 Homodimer-Munc13-1/RIM Heterodimer Switch: C2-domains as Versatile Protein-Protein Interaction Modules. PLOS Biology, 4, e192. [CrossRef] [PubMed]
  • Ma, C., Li, W., Xu, Y., and Rizo, J. (2011). Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat Struct Mol Biol, 18, 542-549. [CrossRef] [PubMed]
  • Mackler, J.M., and Reist, N.E. (2001). Mutations in the second C2 domain of synaptotagmine disrupt synaptic transmission at Drosophila neuromuscular junctions. J Comp Neurol, 436, 4-16. [CrossRef] [PubMed]
  • Maroteaux, L., Campanelli, J.T., and Scheller, R.H. (1988). Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci, 8, 2804-2815. [PubMed]
  • Matthew, W.D., Tsavaler, L and Reichardt, L.F. (1981). Identification of a synaptic vesicle specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol, 91, 257-269. [CrossRef] [PubMed]
  • Maximov, A., and Südhof, T.C. (2005). Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release. Neuron, 48, 547-554. [CrossRef] [PubMed]
  • Maximov, A., Lao, Y., Li, H., Chen, X., Rizo, J., Sørensen, J.B., and Südhof, T.C. (2008). Genetic analysis of Synaptotagmin-7 function in synaptic vesicle exocytosis. Proc Natl Acad Sci USA, 105, 3986-3991. [CrossRef]
  • Maximov, A., Tang, J., Yang, X., Pang, Z.P., and Südhof, T.C. (2009). Complexin Controls the Force Transfer from SNARE complexes to membranes in Fusion. Science, 323, 516-521. [CrossRef] [PubMed]
  • Mayer, A., Wickner, W., and Haas, A. (1996). Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell, 85, 83-94. [CrossRef]
  • McMahon, H., Ushkaryov, Y.A., Edelmann, L., Link, E., Binz, T., Niemann, H., Jahn, R., and Südhof, T.C. (1993). Cellubrevin: A ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature, 364, 346-349. [CrossRef] [PubMed]
  • McMahon, H.T., and Südhof, T.C. (1995). Synaptic core complex of synaptobrevin, syntaxin, and SNAPS forms high affinity α-SNAP binding site. J Biol Chem, 270, 2213-2217. [CrossRef] [PubMed]
  • McMahon, H.T., Missler, M., Li, C. and Südhof, T.C. (1995). Complexins: cytosolic proteins that regulate SNAP-receptor function. Cell, 83, 111-119. [CrossRef] [PubMed]
  • Meijer, M., Burkhardt, P., de Wit, H., Toonen, R.F., Fasshauer, D., and Verhage, M. (2012). Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO J, 31, 2156-2168. [CrossRef] [PubMed]
  • Neher, E., and Penner, R. (1994) Mice sans synaptotagmin [news]. Nature, 372, 316-317. [CrossRef] [PubMed]
  • Nonet, M.L., Grundahl, K., Meyer, B.J., and Rand, J.B. (1993). Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell, 73, 1291-1305. [CrossRef]
  • Novick, P., and Schekman, R. (1979). Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 76, 1858-1862. [CrossRef]
  • Ohtsuka, T., Takao-Rikitsu, E., Inoue, E., Inoue, M., Takeuchi, M., Matsubara, K., Deguchi-Tawarada, M., Satoh, K., Morimoto, K., Nakanishi, H., and Takai, Y. (2002). Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J Cell Biol, 158, 577-590. [CrossRef] [PubMed]
  • Pang, Z.P., Shin, O.H., Meyer, A.C., Rosenmund, C., and Südhof, T.C. (2006a). A gain-of-function mutation in Synaptotagmin-1 reveals a critical role of Ca2+-dependent SNARE-complex binding in synaptic exocytosis. J Neurosci, 26, 12556-12565. [CrossRef] [PubMed]
  • Pang, Z.P., Sun, J., Rizo, J., Maximov, A., and Südhof, T.C. (2006b). Genetic Analysis of Synaptotagmin 2 in Spontaneous and Ca2+-Triggered Neurotransmitter Release. EMBO J, 25, 2039-2050. [CrossRef] [PubMed]
  • Pang, Z.P., Melicoff, E., Padgett, D., Liu, Y., Teich, A.F., Dickey, B.F., Lin, W., Adachi, R., and Südhof, T.C. (2007). Synaptotagmin-2 is Essential for Survival and Contributes to Ca2+-Triggering of Neurotransmitter Release in Central and Neuromuscular Synapses. J Neurosci, 26, 13493-13504. [CrossRef]
  • Perin, M.S., Fried, V.A., Slaughter, C.A., and Südhof, T.C. (1988). The structure of cytochrome b561, a secretory vesicle-specific electron transport protein. EMBO J, 7, 2697–2703. [PubMed]
  • Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R., Südhof, T.C. (1990). Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature, 345, 260-263. [CrossRef] [PubMed]
  • Perin, M.S., Fried, V.A., Stone, D.K., Xie, X.S., and Südhof, T.C. (1991a). Structure of the 116 kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J Biol Chem, 266, 3877-3881. [PubMed]
  • Perin, M.S., Johnston, P.A., Ozcelik, T., Jahn, R., Francke, U., and Südhof, T.C. (1991b). Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J Biol Chem, 266, 615–622. [PubMed]
  • Pevsner, J., Hsu, S.C., and Scheller, R.H. (1994). n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci USA, 91, 1445-1449. [CrossRef]
  • Poirier, M.A., Xiao, W., Macosko, J.C., Chan, C., Shin, Y.K., and Bennett, M.K. (1998). The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol, 5, 765-769. [CrossRef] [PubMed]
  • Rathore, S.S., Bend, E.G., Yu, H., Hammarlund, M., Jorgensen, E.M., and Shen, J. (2010). Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Proc Natl Acad Sci USA, 107, 22399-22406. [CrossRef]
  • Regehr, W.G. (2012). Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol, 4, a005702. [CrossRef]
  • Reim, K., Mansour, M., Varoqueaux, F., McMahon, H.T., Südhof, T.C., Brose, N., and Rosenmund, C. (2001). Complexins regulate the Ca2+-sensitivity of the synaptic neurotransmitter release machinery. Cell, 104, 71-81. [CrossRef]
  • Rhee, J.S., Betz, A., Pyott, S., Reim, K., Varoqueaux, F., Augustin, I., Hesse, D., Südhof, T.C., Takahashi, M., Rosenmund, C., and Brose, N. (2002). Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell, 108, 121-133. [CrossRef]
  • Rizo, J. and Südhof, T.C. (1998). C2-domains, structure of a universal Ca2+-binding domain”. J Biol Chem, 273, 15879-15882. [CrossRef] [PubMed]
  • Rizo, J., and Südhof, T.C. (2012). The Membrane Fusion Enigma: SNAREs, SM Sec1/Munc18 Proteins, and Their Accomplices – Guilty as Charged? Annu Rev Cell Dev Biol, 28, 279-308. [CrossRef] [PubMed]
  • Robinson, I.M., Ranjan, R., and Schwarz, T.L. (2002). Synaptotagmin I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature, 418, 336-340. [CrossRef] [PubMed]
  • Rosahl, T.W., Geppert, M., Spillane, D., Herz, J., Hammer, R.E., Malenka, R.C., and Südhof, T.C. (1993). Short term synaptic plasticity is altered in mice lacking synapsin I. Cell, 75, 661-670. [CrossRef]
  • Sabatini, B.L., and Regehr, W.G. (1996). Timing of neurotransmission at fast synapses in the mammalian brain. Nature, 384, 170-172. [CrossRef] [PubMed]
  • Salminen, A., and Novick, P.J. (1987). A ras-like protein is required for a post-Golgi event in yeast secretion. Cell, 49, 527-538. [CrossRef]
  • Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino de Laureto, P., DasGupta, B.R., and Montecucco, C. (1992). Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature, 359, 832-835. [CrossRef] [PubMed]
  • Schiavo, G., Rossetto, O., Catsicas, S., Polverino de Laureto, P., DasGupta, B.R., Benfenati, F., and Montecucco, C. (1993). Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem, 268, 23784-23787. [PubMed]
  • Schlüter, O.M., Schnell, E., Verhage, M., Tzonopoulos, T., Nicoll, R.A., Janz, R., Malenka, R.C., Geppert, M., and Südhof, T.C. (1999). Rabphilin knock-out mice reveal rat rabphilin is not required for rab3 function in regulating neurotransmitter release. J Neurosci, 19, 5834-5846. [PubMed]
  • Schlüter, O.M., Schmitz, F., Jahn, R., Rosenmund, C., and Südhof, T.C. (2004). A complete genetic analysis of neuronal Rab3 function. J Neurosci, 24, 6629-6637. [CrossRef] [PubMed]
  • Schlüter, O.M., Südhof, T.C., and Rosenmund, C. (2006). Rab3 Superprimes Synaptic Vesicles for Release: Implications for Short Term Synaptic Plasticity. J Neurosci, 26, 1239-1246. [CrossRef] [PubMed]
  • Schneggenburger, R., and Neher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature, 406, 889-893. [CrossRef] [PubMed]
  • Schoch, S., Castillo, P.E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R.C., and Südhof, T.C. (2002). RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature, 415, 321-326. [CrossRef] [PubMed]
  • Schonn, J., Maximov, A., Lao, Y., Südhof, T.C., and Sørensen, J.B. (2008). Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci USA, 105, 3998-4003. [CrossRef]
  • Shao, X., Davletov, B.A., Sutton, R.B., Südhof, T.C., and Rizo, J. (1996). Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science, 273, 248-251. [CrossRef] [PubMed]
  • Shao, X., Li, C., Fernandez, I., Zhang, X., Südhof, T.C., and Rizo, J. (1997). Synaptotagmin-syntaxin interaction: the C2-domain as a Ca2+-dependent electrostatic switch. Neuron, 18, 133-142. [CrossRef] [PubMed]
  • Shao, X., Fernandez, I., Südhof, T.C., and Rizo, J. (1998). Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry, 37, 16106-16115. [CrossRef] [PubMed]
  • Sharma, M., Burré, J., Bronk, P., Zhang, Y., Xu, W., and Südhof, T.C. (2011a). CSPα Knockout Causes Neurodegeneration by Impairing SNAP-25 Function. EMBO J, 31, 829-841. [CrossRef] [PubMed]
  • Sharma, M., Burré, J., and Südhof, T.C. (2011b). CSPα Promotes SNARE-Complex Assembly by Chaperoning SNAP-25 during Synaptic Activity. Nature Cell Biol, 13, 30-39. [CrossRef]
  • Sharma, M., Burré, J., and Südhof, T.C. (2012). Proteasome Inhibition Alleviates SNARE-Dependent Neurodegeneration in CSPα Knockout Mice. Science Transl Medicine, 4, 147ra113. [CrossRef]
  • Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E., and Melia, T.J. (2007). Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell, 128, 183-195. [CrossRef] [PubMed]
  • Shirataki, H., Kaibuchi, K., Sakoda, T., Kishida, S., Yamaguchi, T., Wada, K., Miyazaki, M., and Takai, Y. (1993). Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol Cell Biol, 13, 2061-2068. [PubMed]
  • Shin, O.H., Rhee, J.S., Tang, J., Sugita, S., Rosenmund, C., and Südhof, T.C. (2003). Sr2+-Binding to the Ca2+-Binding Site of the Synaptotagmin 1 C2B-Domain Triggers Fast Exocytosis Without Stimulating SNARE Interactions. Neuron, 37, 99-108. [CrossRef] [PubMed]
  • Shin, O.H., Xu, J., Rizo, J., and Südhof, T.C. (2009). Differential but convergent functions of Ca2+-binding to Synaptotagmin-1 C2-domains mediate neurotransmitter release. Proc Natl Acad Sci USA, 106, 16469-16474. [CrossRef]
  • Shin, O.H., Lu, J., Rhee, J.S., Tomchick, D.R., Pang, Z.P., Wojcik, S.M., Camacho-Perez, M., Brose, N., Machius, M., Rizo, J., Rosenmund, C., and Südhof, T.C. (2010). Munc13 C2B-domain – an activity-dependent Ca2+-regulator of synaptic exocytosis. Nature Struct Mol Biol, 17, 280-288. [CrossRef]
  • Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993a). SNAP receptors implicated in vesicle targeting and fusion. Nature, 362, 318-324. [CrossRef] [PubMed]
  • Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E. (1993b). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell, 75, 409-418. [CrossRef] [PubMed]
  • Sørensen, J.B., Fernández-Chacón, R., Südhof, T.C., and Neher, E. (2003). Examining synaptotagmin1 function in dense core vesicle exocytosis under direct control of Ca2+. J Gen Physiol, 122, 265-276. [CrossRef] [PubMed]
  • Stein, A., Weber, G., Wahl, M.C., and Jahn, R. (2009). Helical extension of the neuronal SNARE complex into the membrane. Nature, 460, 525-528. [PubMed]
  • Südhof, T.C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci, 27, 509-547. [CrossRef] [PubMed]
  • Südhof, T.C. (2012). The presynaptic active zone. Neuron, 75, 11–25. [CrossRef] [PubMed]
  • Südhof, T.C. (2013a) A molecular machine for neurotransmitter release: Synaptotagmin and beyond. Nature Medicine, 19, 1227-1231. [CrossRef] [PubMed]
  • Südhof, T.C. (2013b). Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron, 80, 675-690. [CrossRef] [PubMed]
  • Südhof, T.C., Lottspeich, F., Greengard, P., Mehl, E., and Jahn, R. (1987). Synaptophysin: A synaptic vesicle protein with four transmembrane regions and a novel cytoplasmic domain. Science, 238, 1142-1144. [CrossRef] [PubMed]
  • Südhof, T.C., Czernik, A.J., Kao, H.T., Takei, K., Johnston, P.A., Horiuchi, A., Kanazir, S.D., Wagner, M.A., Perin, M.S., De Camilli, P., et al. (1989a). Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science, 245, 1474-1480. [CrossRef] [PubMed]
  • Südhof, T.C., Baumert, M., Perin, M.S., and Jahn, R. (1989b). A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron, 2, 1475-1481. [CrossRef] [PubMed]
  • Südhof, T.C., Fried, V.A., Stone, D.K., Johnston, P.A., and Xie, X.S. (1989c). Human endomembrane H+-pump strongly resembles the ATP-synthetase of archaebacteria. Proc Natl Acad Sci USA, 86, 6067-6071. [CrossRef]
  • Südhof, T.C., and Jahn, R. (1991). Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron, 6, 665-677. [CrossRef] [PubMed]
  • Südhof, T.C., DeCamilli, P., Niemann, H., and Jahn, R. (1993). Membrane fusion machinery: Insights from synaptic proteins. Cell, 75, 1-4. [CrossRef]
  • Südhof T.C., and Rothman, J.E, (2009). Membrane Fusion: Grappling with SNARE and SM Proteins. Science, 323, 474-477. [CrossRef] [PubMed]
  • Sugita, S., Hata, Y., and Südhof, T.C. (1996). Distinct Ca2+ dependent properties of the first and second C2-domains of synaptotagmin I. J Biol Chem, 271, 1262-1265. [CrossRef] [PubMed]
  • Sugita, S., Han, W., Butz, S., Liu, X., Fernández-Chacón, R., Lao, Y., and Südhof, T.C. (2001). Synaptotagmin VII as a plasma membrane Ca2+-sensor in exocytosis. Neuron, 30, 459-473. [CrossRef] [MathSciNet] [PubMed]
  • Sugita, S, Shin, O.H., Han, W., Lao, Y., and Südhof, T.C. (2002). Synaptotagmins form a hierarchy of exocytotic Ca2+-sensors with distinct Ca2+-affinities. EMBO J, 21, 270-280. [CrossRef] [PubMed]
  • Sun, J., Pang, Z.P., Qin, D., Fahim, A.T., Adachi, R., and Südhof, T.C. (2007). A Dual Ca2+-Sensor Model for Neuro-transmitter Release in a Central Synapse. Nature, 450, 676-682. [CrossRef] [PubMed]
  • Sutton, R.B., Davletov, B.A., Berghuis, A.M., Südhof T.C., and Sprang, S.R. (1995). Structure of the first C2-domain of synaptotagmin I: A novel Ca2+/phospholipid binding fold. Cell, 80, 929-938. [CrossRef]
  • Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature, 395, 347-353. [CrossRef] [PubMed]
  • Tang, J, Maximov, A, Shin, O.H., Dai, H., Rizo, J., and Südhof, T.C. (2006). A Complexin/Synaptotagmin-1 Switch Controls Fast Synaptic Vesicle Exocytosis. Cell, 126, 1175-1187. [CrossRef] [PubMed]
  • Trimble, W.S., Cowan, D.M., Scheller, R.H. (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA, 85, 4538-4542. [CrossRef]
  • tom Dieck S., Sanmartí-Vila, L., Langnaese, K., Richter, K., Kindler, S., Soyke, A., Wex, H., Smalla, K.H., Kämpf, U., Fränzer, J.T., Stumm, M, Garner, C.C., and Gundelfinger, E.D. (1998). Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol, 142, 499-509. [CrossRef] [PubMed]
  • Tobaben, S., Thakur, P., Fernández-Chacón, R., Südhof, T.C., Rettig, J., and Stahl, B. (2001). A trimeric protein complex functions as a synaptic chaperone machine. Neuron, 31, 987-999. [CrossRef] [PubMed]
  • Touchot, N., Chardin, P., and Tavitian, A. (1987). Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci USA, 84, 8210-8214. [CrossRef]
  • Tsetsenis, T., Younts, T.J., Chiu, C.Q., Kaeser, P.S., Castillo, P.E., and Südhof, T.C. (2011). Rab3B protein is required for long-term depression of hippocampal inhibitory synapses and for normal reversal learning. Proc Natl Acad Sci USA, 108, 14300–14305. [CrossRef]
  • Ubach, J., Zhang, X., Shao, X., Südhof, T.C., and Rizo, J. (1998) Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J., 17, 3921-3930. [CrossRef] [PubMed]
  • Ubach, J., Lao, Y., Fernandez, I., Arac, D., Südhof, T.C., and Rizo, J. (2001) The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry, 40, 5854-5860. [CrossRef] [PubMed]
  • Varoqueaux, F., Sigler, A., Rhee, J.S., Brose, N., Enk, C., Reim, K., and Rosenmund, C. (2002). Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci USA, 99, 9037-9042. [CrossRef]
  • Verhage, M., Maia, A.S., Plomp, J.J., Brussaard, A.B., Heeroma, J.H., Vermeer, H., Toonen, R.F., Hammer, R.E., van den Berg, T.K., Missler, M., Geuze, H.J., and Südhof, T.C. (2000). Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 287, 864-869. [CrossRef] [PubMed]
  • Voets, T., Moser, T., Lund, P.E., Chow, R.H., Geppert, M., Südhof, T.C., and Neher, E. (2001). Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc Natl Acad Sci USA, 98, 11680-11685. [CrossRef]
  • von Mollard, G.F., Mignery, G.A., Baumert, M., Perin, M.S., Hanson, T.J., Burger, P.M., Jahn, R., and Südhof, T.C. (1990). Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA, 87, 1988-1992. [CrossRef]
  • von Mollard, G.F., Südhof, T.C., and Jahn, R. (1991). A small GTP-binding protein (rab3A) dissociates from synaptic vesicles during exocytosis. Nature, 349, 79-81. [CrossRef] [PubMed]
  • Wang, X., Kibschull, M., Laue, M.M., Lichte, B., Petrasch-Parwez, E., and Kilimann, M.W. (1999). Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol, 147, 151-162. [CrossRef] [MathSciNet] [PubMed]
  • Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K., and Südhof, T.C. (1997). RIM: A putative Rab3-effector in regulating synaptic vesicle fusion. Nature, 388, 593-598. [CrossRef] [PubMed]
  • Wang, Y., Sugita, S., and Südhof, T.C. (2000). The RIM/NIM family of neuronal SH3-domain proteins: interactions with Rab3 and a new class of neuronal SH3-domain proteins. J Biol Chem, 275, 20033-20044. [CrossRef] [PubMed]
  • Wang, Y., Liu, X., Biederer, T., and Südhof, T.C. (2002). A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proc Natl Acad Sci USA, 99, 14464-14469. [CrossRef]
  • Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M, Parlati, F., Söllner, T.H., and Rothman, J.E. (1998). SNAREpins: minimal machinery for membrane fusion. Cell, 92, 759-772. [CrossRef] [PubMed]
  • Wen, H., Linhoff, M.W., McGinley, M.J., Li, G.L., Corson, G.M., Mandel, G., and Brehm, P. (2010). Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. Proc Natl Acad Sci USA, 107, 13906-13911. [CrossRef]
  • Whittaker, V.P., and Sheridan, M.N. (1965). The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J Neurochem, 12, 363-372. [CrossRef] [PubMed]
  • Wilson, D.W., Wilcox, C.A., Flynn, G.C., Chen, E., Kuang, W.J., Henzel, W.J., Block, M.R., Ullrich, A., and Rothman, J.E. (1989). A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature, 339, 355-359. [CrossRef] [PubMed]
  • Xu, J., Mashimo, T., and Südhof, T.C. (2007). Synaptotagmin-1, -2, and -9: Ca2+-sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron, 54, 801-812. [CrossRef] [PubMed]
  • Xu, J., Pang, Z.P., Shin, O.H., and Südhof, T.C. (2009). Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nature Neurosci, 12, 759-766. [CrossRef]
  • Xu, W., Morishita, W., Buckmaster, P.S., Pang, Z.P., Malenka, R.C., and Südhof, T.C. (2012). Distinct Neuronal Coding Schemes in Memory Revealed by Selective Erasure of Fast Synchronous Synaptic Transmission. Neuron, 73, 990-1001. [CrossRef] [PubMed]
  • Xue, M., Reim, K., Chen, X., Chao, H.T., Deng, H., Rizo, J., Brose, N., and Rosenmund, C. (2007). Distinct domains of complexin I differentially regulate neurotransmitter release. Nat Struct Mol Biol, 14, 949-958. [CrossRef] [PubMed]
  • Yamaguchi, T., Dulubova, I., Min, S.W., Chen, X., Rizo, J., and Südhof, T.C. (2002). Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Developmental Cell, 2, 295-305. [CrossRef] [PubMed]
  • Yang, X., Kaeser-Woo, Y.J., Pang, Z.P., Xu, W., and Südhof, T.C. (2010). Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+-Sensor via its Accessory a-Helix. Neuron, 68, 907-920. [CrossRef] [PubMed]
  • Yang, X., Cao, P., and Südhof, T.C. (2013). Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes. Proc Natl Acad Sci USA, 110, 20777-20782. [CrossRef]
  • Zhen, M., and Jin, Y. (1999). The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature, 401, 371-375. [PubMed]
  • Zhou, P., Pang, Z.P., Yang, X., Zhang, Y., Rosenmund, C., Bacaj, T., and Südhof, T.C. (2013a). Syntaxin-1 N-Peptide and Habc-Domain Perform Distinct Essential Functions in Synaptic Vesicle Fusion. EMBO J, 32, 159–171. [CrossRef] [MathSciNet] [PubMed]
  • Zhou, P., Bacaj, T., Yang, X., Pang, Z.P., and Südhof, T.C. (2013b). Lipid-Anchored SNARE Lacking Transmembrane Regions Support Membrane Fusion During Neurotransmitter Release. Neuron, 80, 470-483. [CrossRef] [PubMed]
  • Zimmermann, H., and Whittaker, V.P. (1997). Morphological and biochemical heterogeneity of cholinergic synaptic vesicles. Nature, 267, 633-635. [CrossRef]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.