Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 4, 2015
Page(s) 295 - 307
Section Rôle des nutriments dans l’homéostasie énergétique
DOI https://doi.org/10.1051/jbio/2016009
Publié en ligne 28 mars 2016
  • Albert, V., and Hall, M.N. (2010). mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol, 33, 55-66. [Google Scholar]
  • Alessi, D.R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B.A. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J, 15, 6541-6551. [PubMed] [Google Scholar]
  • Arous, C., Naïmi, M., and Van Obberghen, E. (2011). Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells. Diabetologia, 54, 954-964. [CrossRef] [PubMed] [Google Scholar]
  • Arsham, A.M., Howell, J.J., and Simon, M.C. (2003). A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem, 278, 29655-29660. [CrossRef] [PubMed] [Google Scholar]
  • Averous, J., and Proud, C.G. (2006). When translation meets transformation : the mTOR story. Oncogene, 25, 6423-6435. [CrossRef] [PubMed] [Google Scholar]
  • Avruch, J., Belham, C., Weng, Q., Hara, K., and Yonezawa, K. (2001). The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Prog Mol Subcell Biol, 26, 115-154. [CrossRef] [PubMed] [Google Scholar]
  • Belgardt, B.F., Okamura, T., and Brüning, J.C. (2009). Hormone and glucose signalling in POMC and AgRP neurons. J Physiol, 587, 5305-5314. [CrossRef] [PubMed] [Google Scholar]
  • Bhaskar, P.T., and Hay, N. (2007). The two TORCs and Akt. Dev Cell, 12, 487-502. [CrossRef] [PubMed] [Google Scholar]
  • Blouet, C., Ono, H., and Schwartz, G.J. (2008). Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab, 8, 459-467. [CrossRef] [PubMed] [Google Scholar]
  • Blouet, C., Jo, Y.-H., Li, X., and Schwartz, G.J. (2009). Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci, 29, 8302-8311. [CrossRef] [PubMed] [Google Scholar]
  • Castañeda, T.R., Abplanalp, W., Um, S.H., Pfluger, P.T., Schrott, B., Brown, K., Grant, E., Carnevalli, L., Benoit, S.C., Morgan, D.A., Gilham, D., Hui, D.Y., Rahmouni, K., Thomas, G., Kozma, S.C., Clegg, D.J., and Tschöp, M.H. (2012). Metabolic control by S6 kinases depends on dietary lipids. PloS One, 7, e32631. [CrossRef] [PubMed] [Google Scholar]
  • Cheadle, J.P., Reeve, M.P., Sampson, J.R., and Kwiatkowski, D.J. (2000). Molecular genetic advances in tuberous sclerosis. Hum Genet, 107, 97-114. [CrossRef] [PubMed] [Google Scholar]
  • Cheng, J.B., and Russell, D.W. (2004). Mammalian wax biosynthesis., I. Identification of two fatty acyl-Coenzyme A reductases with different substrate specificities and tissue distributions. J Biol Chem, 279, 37789-37797. [CrossRef] [PubMed] [Google Scholar]
  • Choi, J., Chen, J., Schreiber, S.L., and Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science, 273, 239-242. [CrossRef] [PubMed] [Google Scholar]
  • Cone, R.D. (2005). Anatomy and regulation of the central melanocortin system. Nat Neurosci, 8, 571-578. [CrossRef] [PubMed] [Google Scholar]
  • Costa-Mattioli, M., and Monteggia, L.M. (2013). mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci, 16, 1537-1543. [CrossRef] [PubMed] [Google Scholar]
  • Cota, D., Proulx, K., Smith, K.A.B., Kozma, S.C., Thomas, G., Woods, S.C., and Seeley, R.J. (2006). Hypothalamic mTOR signaling regulates food intake. Science, 312, 927-930. [CrossRef] [PubMed] [Google Scholar]
  • Cota, D., Proulx, K., and Seeley, R.J. (2007). The role of CNS fuel sensing in energy and glucose regulation. Gastroenterology, 132, 2158-2168. [CrossRef] [PubMed] [Google Scholar]
  • Cota, D., Matter, E.K., Woods, S.C., and Seeley, R.J. (2008). The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci, 28, 7202-7208. [CrossRef] [PubMed] [Google Scholar]
  • Cowley, M.A., Cone, R.D., Enriori, P., Louiselle, I., Williams, S.M., and Evans, A.E. (2003). Electrophysiological actions of peripheral hormones on melanocortin neurons. Ann New York Acad Sci, 994, 175-186. [CrossRef] [Google Scholar]
  • Dagon, Y., Hur, E., Zheng, B., Wellenstein, K., Cantley, L.C., and Kahn, B.B. (2012). p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metab, 16, 104-112. [CrossRef] [PubMed] [Google Scholar]
  • Dalle Pezze, P., Sonntag, A.G., Thien, A., Prentzell, M.T., Gödel, M., Fischer, S., Neumann-Haefelin, E., Huber, T.B., Baumeister, R., Shanley, D.P., and Thedieck, K. (2012). A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal, 5, ra25. [PubMed] [Google Scholar]
  • Dennis, P.B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S.C., and Thomas, G. (2001). Mammalian TOR : a homeostatic ATP sensor. Science, 294, 1102-1105. [CrossRef] [PubMed] [Google Scholar]
  • Destefano, M.A., and Jacinto, E. (2013). Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2). Biochem Soc Trans, 41, 896-901. [CrossRef] [PubMed] [Google Scholar]
  • Dibble, C.C., and Manning, B.D. (2013). Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol, 15, 555-564. [CrossRef] [PubMed] [Google Scholar]
  • Elmquist, J.K. (2001). Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav, 74, 703-708. [CrossRef] [PubMed] [Google Scholar]
  • García-Martínez, J.M., and Alessi, D.R. (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J, 416, 375-385. [CrossRef] [PubMed] [Google Scholar]
  • Gross, J.D., Moerke, N.J., von der Haar, T., Lugovskoy, A.A., Sachs, A.B., McCarthy, J.E.G., and Wagner, G. (2003). Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell, 115, 739-750. [CrossRef] [PubMed] [Google Scholar]
  • Guertin, D.A., Stevens, D.M., Thoreen, C.C., Burds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J., and Sabatini, D.M. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell, 11, 859-871. [CrossRef] [PubMed] [Google Scholar]
  • Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., Turk, B.E., and Shaw, R.J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell, 30, 214-226. [CrossRef] [PubMed] [Google Scholar]
  • Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 110, 177-189. [CrossRef] [PubMed] [Google Scholar]
  • Hardie, D.G., Schaffer, B.E., and Brunet, A. (2016). AMPK : An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol, 26, 190-201. [CrossRef] [PubMed] [Google Scholar]
  • Harlan, S.M., Guo, D.-F., Morgan, D.A., Fernandes-Santos, C., and Rahmouni, K. (2013). Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab, 17, 599-606. [CrossRef] [PubMed] [Google Scholar]
  • Hay, N., and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes Dev, 18, 1926-1945. [CrossRef] [PubMed] [Google Scholar]
  • Hill, J.W., Williams, K.W., Ye, C., Luo, J., Balthasar, N., Coppari, R., Cowley, M.A., Cantley, L.C., Lowell, B.B., and Elmquist, J.K. (2008). Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest, 118, 1796-1805. [CrossRef] [PubMed] [Google Scholar]
  • Huang, J., and Manning, B.D. (2008). The TSC1-TSC2 complex : a molecular switchboard controlling cell growth. Biochem J, 412, 179-190. [CrossRef] [PubMed] [Google Scholar]
  • Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.-L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 4, 648-657. [CrossRef] [PubMed] [Google Scholar]
  • Inoki, K., Zhu, T., and Guan, K.-L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577-590. [CrossRef] [PubMed] [Google Scholar]
  • Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.Y., He, X., MacDougald, O.A., You, M., Williams, B.O., and Guan, K.L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126, 955-968. [CrossRef] [PubMed] [Google Scholar]
  • Jaafar, R., Zeiller, C., Pirola, L., Di Grazia, A., Naro, F., Vidal, H., Lefai, E., and Némoz, G. (2011). Phospholipase D regulates myogenic differentiation through the activation of both mTORC1 and mTORC2 complexes. J Biol Chem, 286, 22609-22621. [CrossRef] [PubMed] [Google Scholar]
  • Janus, A., Robak, T., and Smolewski, P. (2005). The mammalian target of the rapamycin (mTOR) kinase pathway : its role in tumourigenesis and targeted antitumour therapy. Cell Mol Biol Lett, 10, 479-498. [PubMed] [Google Scholar]
  • Kahn, B.B., Alquier, T., Carling, D., and Hardie, D.G. (2005). AMP-activated protein kinase : ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 1, 15-25. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kemp, B.E., Mitchelhill, K.I., Stapleton, D., Michell, B.J., Chen, Z.P., and Witters, L.A. (1999). Dealing with energy demand : the AMP-activated protein kinase. Trends Biochem Sci, 24, 22-25. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kim, D.-H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110, 163-175. [CrossRef] [PubMed] [Google Scholar]
  • Kimura, N., Tokunaga, C., Dalal, S., Richardson, C., Yoshino, K., Hara, K., Kemp, B.E., Witters, L.A., Mimura, O., and Yonezawa, K. (2003). A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells, 8, 65-79. [CrossRef] [PubMed] [Google Scholar]
  • Kocalis, H.E., Hagan, S.L., George, L., Turney, M.K., Siuta, M.A., Laryea, G.N., Morris, L.C., Muglia, L.J., Printz, R.L., Stanwood, G.D., and Niswender, KD. (2014). Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol Metab, 3, 394-407. [CrossRef] [PubMed] [Google Scholar]
  • Laplante, M., and Sabatini, D.M. (2009). mTOR signaling at a glance. J Cell Sci, 122, 3589-3594. [CrossRef] [PubMed] [Google Scholar]
  • Laplante, M., and Sabatini, D.M. (2012). mTOR Signaling. Cold Spring Harb Perspect Biol, 4. [Google Scholar]
  • Liu, L., Cash, T.P., Jones, R.G., Keith, B., Thompson, C.B., and Simon, M.C. (2006). Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell, 21, 521-531. [CrossRef] [PubMed] [Google Scholar]
  • Lopez, L., Varela, L., Vazquez, M.J., Rodriguez-Cuenca, S., Gonzalez, C.R., and Vidal-Puig, A. (2010). Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med, 16, 1001-1009. [CrossRef] [PubMed] [Google Scholar]
  • Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P.P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell, 121, 179-193. [CrossRef] [PubMed] [Google Scholar]
  • Martin, T.L., Alquier, T., Asakura, K., Furukawa, N., Preitner, F., and Kahn, B.B. (2006). Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem, 281, 18933-18941. [CrossRef] [PubMed] [Google Scholar]
  • Martins, L., Fernández-Mallo, D., Novelle, M.G., Vázquez, M.J., Tena-Sempere, M., Nogueiras, R., López, M., and Diéguez, C. (2012). Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin. PloS One, 7, e46923. [CrossRef] [PubMed] [Google Scholar]
  • Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferré, P., Birnbaum, M.J., Stuck, B.J., and Kahn, B.B. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428, 569-574. [CrossRef] [PubMed] [Google Scholar]
  • Mordier, S., and Iynedjian, P.B. (2007). Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochem Biophys Res Commun, 362, 206-211. [CrossRef] [PubMed] [Google Scholar]
  • Mori, H., Inoki, K., Münzberg, H., Opland, D., Faouzi, M., Villanueva, E.C., Ikenoue, T., Kwiatkowski, D., MacDougald, O.A., Myers, M.G., and Guan, K.L. (2009). Critical role for hypothalamic mTOR activity in energy balance. Cell Metab, 9, 362-374. [CrossRef] [PubMed] [Google Scholar]
  • Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., and Schwartz, M.W. (2006). Central nervous system control of food intake and body weight. Nature, 443, 289-295. [CrossRef] [PubMed] [Google Scholar]
  • Muta, K., Morgan, D.A., and Rahmouni, K. (2015). The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology, 156, 1398-1407. [CrossRef] [PubMed] [Google Scholar]
  • Oh, W.J., and Jacinto, E. (2011). mTOR complex 2 signaling and functions. Cell Cycle, 10, 2305-2316. [CrossRef] [PubMed] [Google Scholar]
  • Ono, H., Pocai, A., Wang, Y., Sakoda, H., Asano, T., Backer, J.M., Schwartz, G.J., and Rossetti, L. (2008). Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest, 118, 2959-2968. [PubMed] [Google Scholar]
  • Oshiro, N., Takahashi, R., Yoshino, K., Tanimura, K., Nakashima, A., Eguchi, S., Miyamoto, T., Hara, K., Takehana, K., Avruch, J., Kikkawa, U., and Yonezawa, K. (2007). The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem, 282, 20329-20339. [CrossRef] [PubMed] [Google Scholar]
  • Peterson, R.T., Desai, B.N., Hardwick, J.S., and Schreiber, S.L. (1999). Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci USA, 96, 4438-4442. [CrossRef] [Google Scholar]
  • Peterson, T.R., Laplante, M., Thoreen, C.C., Sancak, Y., Kang, S.A., Kuehl, W.M., Gray, N.S., and Sabatini, D.M. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 137, 873-886. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Poulin, F., Gingras, A.C., Olsen, H., Chevalier, S., and Sonenberg, N. (1998). 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem, 273, 14002-14007. [CrossRef] [PubMed] [Google Scholar]
  • Reed, A.S., Unger, E.K., Olofsson, L.E., Piper, M.L., Myers, M.G., and Xu, A.W. (2010). Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes, 59, 894-906. [CrossRef] [PubMed] [Google Scholar]
  • Reiling, J.H., and Hafen, E. (2004). The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev, 18, 2879-2892. [CrossRef] [PubMed] [Google Scholar]
  • Ropelle, E.R., Pauli, J.R., Fernandes, M.F.A., Rocco, S.A., Marin, R.M., Morari, J., Souza, K.K., Dias, M.M., Gomes-Marcondes, M.C., Gontijo, J.A.R., Franchini, K.G., Velloso, L.A., Saad, M.J., and Carvalheira, J.B. (2008). A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes, 57, 594-605. [CrossRef] [PubMed] [Google Scholar]
  • Rutter, G.A., Da Silva Xavier, G., and Leclerc, I. (2003). Roles of 5’-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J, 375, 1-16. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Saitoh, M., Pullen, N., Brennan, P., Cantrell, D., Dennis, P.B., and Thomas, G. (2002). Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site. J Biol Chem, 277, 20104-20112. [CrossRef] [PubMed] [Google Scholar]
  • Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141, 290-303. [CrossRef] [PubMed] [Google Scholar]
  • Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098-1101. [CrossRef] [PubMed] [Google Scholar]
  • Sarbassov, D.D., Ali, S.M., Sengupta, S., Sheen, J.-H., Hsu, P.P., Bagley, A.F., Markhard, A.L., and Sabatini, D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell, 22, 159-168. [CrossRef] [PubMed] [Google Scholar]
  • Smith, M.A., Katsouri, L., Irvine, E.E., Hankir, M.K., Pedroni, S.M.A., Voshol, P.J., Gordon, M.W., Choudhury, A.I., Woods, A., Vidal-Puig, A., Carling, D., and Withers, D. (2015). Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice. Cell Rep, 11, 335-343. [CrossRef] [PubMed] [Google Scholar]
  • Stevanovic, D., Trajkovic, V., Müller-Lühlhoff, S., Brandt, E., Abplanalp, W., Bumke-Vogt, C., Liehl, B., Wiedmer, P., Janjetovic, K., Starcevic, V., Pfeiffer, A.F., Al-Hasani, H., Tschöp, M.H., and Castañeda, T.R. (2013). Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol Cell Endocrinol, 381, 280-290. [CrossRef] [PubMed] [Google Scholar]
  • Thomanetz, V., Angliker, N., Cloëtta, D., Lustenberger, R.M., Schweighauser, M., Oliveri, F., Suzuki, N., and Rüegg, M.A. (2013). Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol, 201, 293-308. [CrossRef] [PubMed] [Google Scholar]
  • Tschöp, M., Smiley, D.L., and Heiman, M.L. (2000). Ghrelin induces adiposity in rodents. Nature, 407, 908-913. [CrossRef] [PubMed] [Google Scholar]
  • Um, S.H., Frigerio, F., Watanabe, M., Picard, F., Joaquin, M., Sticker, M., Fumagalli, S., Allegrini, P.R., Kozma, S.C., Auwerx, J., and Thomas, G. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature, 431, 200-205. [CrossRef] [PubMed] [Google Scholar]
  • Varela, L., Martínez-Sánchez, N., Gallego, R., Vázquez, M.J., Roa, J., Gándara, M., Schoenmakers, E., Nogueiras, R., Chatterjee, K., Tena-Sempere, M., Diéguez, C., and López, M. (2012). Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol, 227, 209-222. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Villanueva, E.C., Münzberg, H., Cota, D., Leshan, R.L., Kopp, K., Ishida-Takahashi, R., Jones, J.C., Fingar, D.C., Seeley, R.J., and Myers, M.G. (2009). Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology, 150, 4541-4551. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Viollet, B., Andreelli, F., Jørgensen, S.B., Perrin, C., Geloen, A., Flamez, D., Mu, J., Lenzner, C., Baud, O., Bennoun, M., Gomas, E., Nicolas, G., Wojtaszewski, J.F., Kahn, A., Carling, D., Schuit, F.C., Birnbaum, M.J., Richter, E.A., Burcelin, R., and Vaulont, S. (2003). The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest, 111, 91-98. [CrossRef] [PubMed] [Google Scholar]
  • Wang, L., Harris, T.E., Roth, R.A., and Lawrence, J.C. (2007). PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem, 282, 20036-20044. [CrossRef] [PubMed] [Google Scholar]
  • Wouters, B.G., and Koritzinsky, M. (2008). Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer, 8, 851-864. [CrossRef] [PubMed] [Google Scholar]
  • Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell, 124, 471-484. [CrossRef] [PubMed] [Google Scholar]
  • Xu, Y., Lai, E., Liu, J., Lin, J., Yang, C., Jia, C., Li, Y., Bai, X., and Li, M. (2013). IKK interacts with rictor and regulates mTORC2. Cell Signal, 25, 2239-2245. [CrossRef] [PubMed] [Google Scholar]
  • Yang, S.-B., Tien, A.-C., Boddupalli, G., Xu, A.W., Ja, Y.N., and Jan, L.Y. (2012). Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron, 75, 425-436. [CrossRef] [PubMed] [Google Scholar]
  • Zheng, H., and Berthoud, H.-R. (2008). Neural systems controlling the drive to eat : mind versus metabolism. Physiology (Bethesda), 23, 75-83. [CrossRef] [PubMed] [Google Scholar]
  • Zinzalla, V., Stracka, D., Oppliger, W., and Hall, M.N. (2011). Activation of mTORC2 by association with the ribosome. Cell, 144, 757-768. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.