Accès gratuit
Biologie Aujourd'hui
Volume 209, Numéro 4, 2015
Page(s) 309 - 315
Section Rôle des nutriments dans l’homéostasie énergétique
Publié en ligne 28 mars 2016
  • Benoit, S.C., Kemp, C.J., Elias, C.F., Abplanalp, W., Herman, J.P., Migrenne, S., Lefevre, A.L., Cruciani-Guglielmacci, C., Magnan, C., Yu, F., Niswender K., Irani B.G., Holland, W.L. and Clegg, D.J. (2009). Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest, 119, 2577-2589. [CrossRef] [PubMed] [Google Scholar]
  • Blouet, C., and Schwartz, G.J. (2010). Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res, 209, 1-12. [CrossRef] [PubMed] [Google Scholar]
  • Cansell, C., Castel, J., Denis, R.G., Rouch, C., Delbes, A.S., Martinez, S., Mestivier, D., Finan, B., Maldonado-Aviles, J.G., Rijnsburger, M., Tschöp, M.H., DiLeone, R.J., Eckel, R.H., la Fleur, S.E., Magnan, C., Hnasko, T.S., and Luquet, S. (2014). Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry, 19, 1095-1105. [CrossRef] [PubMed] [Google Scholar]
  • Clegg, D.J., Air, E.L., Woods, S.C., and Seeley, R.J. (2002). Eating elicited by orexin-a, but not melanin-concentrating hormone, is opioid mediated. Endocrinology, 143, 2995-3000. [CrossRef] [PubMed] [Google Scholar]
  • Clément, L., Cruciani-Guglielmacci, C., Magnan, C., Vincent, M., Douared, L., Orosco, M., Assimacopoulos-Jeannet, F., Penicaud, L., and Ktorza, A. (2002). Intra-cerebroventricular infusion of a triglyceride emulsion leads to both altered insulin secretion and hepatic glucose production in rats. Pflugers Arch, 445, 375-380. [CrossRef] [PubMed] [Google Scholar]
  • Cruciani-Guglielmacci, C., Hervalet, A., Douared, L., Sanders, N.M., Levin, B.E., Ktorza, A., and Magnan, C. (2004). Beta oxidation in the brain is required for the effects of non-esterified fatty acids on glucose-induced insulin secretion in rats. Diabetologia, 47, 2032-2038. [CrossRef] [PubMed] [Google Scholar]
  • Cruciani-Guglielmacci, C., Vincent-Lamon, M., Rouch, C., Orosco, M., Ktorza, A., and Magnan, C. (2005). Early changes in insulin secretion and action induced by high-fat diet are related to a decreased sympathetic tone. Am J Physiol Endocrinol Metab, 288, E148-154. [CrossRef] [PubMed] [Google Scholar]
  • Escartin, C., Pierre, K., Colin, A., Brouillet, E., Delzescaux, T., Guillermier, M., Dhenain, M., Deglon, N., Hantraye, P., Pellerin, L., and Bonvento, G. (2007). Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J Neurosci, 27, 7094-7104. [CrossRef] [PubMed] [Google Scholar]
  • Gaillard, D., Laugerette, F., Darcel, N., El-Yassimi, A., Passilly-Degrace, P., Hichami, A., Khan, N.A., Montmayeur, J.P., and Besnard, P. (2008). The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J, 22, 1458-1468. [CrossRef] [PubMed] [Google Scholar]
  • Honen, B.N., Saint, D.A., and Laver, D.R. (2003). Suppression of calcium sparks in rat ventricular myocytes and direct inhibition of sheep cardiac RyR channels by EPA, DHA and oleic acid. J Membr Biol, 196, 95-103. [CrossRef] [PubMed] [Google Scholar]
  • Jo, Y.H., Su, Y., Gutierrez-Juarez, R., and Chua, S., Jr. (2009). Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol, 101, 2305-2316. [CrossRef] [PubMed] [Google Scholar]
  • Lam, T.K., Pocai, A., Gutierrez-Juarez, R., Obici, S., Bryan, J., Aguilar-Bryan, L., Schwartz, G.J., and Rossetti, L. (2005). Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med, 11, 320-327. [CrossRef] [PubMed] [Google Scholar]
  • Le Foll, C., Irani, B.G., Magnan, C., Dunn-Meynell, A.A., and Levin, B.E. (2009). Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol, 297, R655-664. [CrossRef] [PubMed] [Google Scholar]
  • Le Foll, C., Dunn-Meynell, A., Musatov, S., Magnan, C., and Levin, B.E. (2013). FAT/CD36 : a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes, 62, 2709-2716. [CrossRef] [PubMed] [Google Scholar]
  • Le Foll, C., Dunn-Meynell, A.A., Miziorko, H.M., and Levin, B.E. (2015). Role of VMH ketone bodies in adjusting caloric intake to increased dietary fat content in DIO and DR rats. Am J Physiol Regul Integr Comp Physiol, 308, R872-878. [CrossRef] [PubMed] [Google Scholar]
  • Levin, B.E., Magnan, C., Dunn-Meynell, A., and LeFoll, C. (2011). Metabolic sensing and the brain : who, what, where, and how? Endocrinology, 152, 2552-2557. [CrossRef] [PubMed] [Google Scholar]
  • Luquet, S., and Magnan, C. (2009). The central nervous system at the core of the regulation of energy homeostasis. Front Biosci (Schol Ed), 1, 448-465. [CrossRef] [PubMed] [Google Scholar]
  • Magnan, C., Collins, S., Berthault, M.F., Kassis, N., Vincent, M., Gilbert, M., Penicaud, L., Ktorza, A., and Assimacopoulos-Jeannet, F. (1999). Lipid infusion lowers sympathetic nervous activity and leads to increased beta-cell responsiveness to glucose. J Clin Invest, 103, 413-419. [CrossRef] [PubMed] [Google Scholar]
  • Magnan, C., Levin, B.E., and Luquet, S. (2015). Brain lipid sensing and the neural control of energy balance. Mol Cell Endocrinol, 418, 1, 3-8. [CrossRef] [PubMed] [Google Scholar]
  • Migrenne, S., Cruciani-Guglielmacci, C., Kang, L., Wang, R., Rouch, C., Lefevre, A.L., Ktorza, A., Routh, V., Levin, B., and Magnan, C. (2006). Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes, 55, S139-S144. [CrossRef] [Google Scholar]
  • Moulle, V.S., Le Foll, C., Philippe, E., Kassis, N., Rouch, C., Marsollier, N., Bui, L.C., Guissard, C., Dairou, J., Lorsignol, A., Pénicaud, L., Levin, B.E., Cruciani-Guglielmacci C., and Magnan C. (2013). Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats. PLoS One, 8, e74021. [CrossRef] [PubMed] [Google Scholar]
  • Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., and Rossetti, L. (2002). Central administration of oleic acid inhibits glucose production and food intake. Diabetes, 51, 271-275. [CrossRef] [PubMed] [Google Scholar]
  • Oishi, K., Zheng, B., and Kuo, J.F. (1990). Inhibition of Na,K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem, 265, 70-75. [PubMed] [Google Scholar]
  • Oomura, Y., Nakamura, T., Sugimori, M., and Yamada, Y. (1975). Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol Behav, 14, 483-486. [CrossRef] [PubMed] [Google Scholar]
  • Picard, A., Rouch, C., Kassis, N., Moullé, V.S., Croizier, S., Denis, R.G., Castel, J., Coant, N., Davis, K., Clegg, D.J., Benoit, S.C., Prévot, V., Bouret, S., Luquet, S., Le Stunff, H., Cruciani-Guglielmacci, C., and Magnan, C. (2013). Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab, 3, 167-176. [CrossRef] [PubMed] [Google Scholar]
  • Proulx, K., and Seeley, R.J. (2005). The regulation of energy balance by the central nervous system. Psychiatr Clin North Am, 28, 25-38, vii. [CrossRef] [PubMed] [Google Scholar]
  • Proulx, K., Cota, D., Woods, S.C., and Seeley, R.J. (2008). Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system. Diabetes, 57, 3231-3238. [CrossRef] [PubMed] [Google Scholar]
  • Rapoport, S.I., Chang, M.C., and Spector, A.A. (2001). Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res, 42, 678-685. [PubMed] [Google Scholar]
  • Ronnett, G.V., Kim, E.K., Landree, L.E., and Tu, Y. (2005). Fatty acid metabolism as a target for obesity treatment. Physiol Behav, 85, 25-35. [CrossRef] [PubMed] [Google Scholar]
  • Ross, R.A., Rossetti, L., Lam, T.K., and Schwartz, G.J. (2010). Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab, 299, E633-639. [CrossRef] [PubMed] [Google Scholar]
  • Smith, Q.R., and Nagura, H. (2001). Fatty acid uptake and incorporation in brain : studies with the perfusion model. J Mol Neurosci, 16, 167-172; discussion 215-121. [CrossRef] [PubMed] [Google Scholar]
  • Tewari, K.P., Malinowska, D.H., Sherry, A.M., and Cuppoletti, J. (2000). PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. Am J Physiol Cell Physiol, 279, C40-50. [PubMed] [Google Scholar]
  • Tu, Y., Thupari, J.N., Kim, E.K., Pinn, M.L., Moran, T.H., Ronnett, G.V., and Kuhajda, F.P. (2005). C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology, 146, 486-493. [CrossRef] [PubMed] [Google Scholar]
  • Wang, H., and Eckel, R.H. (2014). What are lipoproteins doing in the brain? Trends Endocrinol Metab, 25, 8-14. [CrossRef] [PubMed] [Google Scholar]
  • Wang, H., Astarita, G., Taussig, M.D., Bharadwaj, K.G., DiPatrizio, N.V., Nave, K.A., Piomelli, D., Goldberg, I.J., and Eckel, R.H. (2011). Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab, 13, 105-113. [CrossRef] [PubMed] [Google Scholar]
  • Wang, R., Cruciani-Guglielmacci, C., Migrenne, S., Magnan, C., Cotero, V.E., and Routh, V.H. (2006). Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol, 95, 1491-1498. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.