Accès gratuit
Biologie Aujourd'hui
Volume 209, Numéro 4, 2015
Page(s) 317 - 323
Section Rôle des nutriments dans l’homéostasie énergétique
Publié en ligne 28 mars 2016
  • B’chir, W., Maurin, A.-C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P., and Bruhat, A. (2013). The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res, 41, 7683-7699. [CrossRef] [PubMed] [Google Scholar]
  • Best, D.H., Austin, E.D., Chung, W.K., and Elliott, C.G. (2014). Genetics of pulmonary hypertension. Curr Opin Cardiol, 29, 520-527. [CrossRef] [PubMed] [Google Scholar]
  • Bruhat, A., Jousse, C., and Fafournoux, P. (1999). Amino acid limitation regulates gene expression. Proc Nutr Soc, 58, 625-632. [CrossRef] [PubMed] [Google Scholar]
  • Castilho, B.A., Shanmugam, R., Silva, R.C., Ramesh, R., Himme, B.M., and Sattlegger, E. (2014). Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta, 1843, 1948-1968. [CrossRef] [PubMed] [Google Scholar]
  • Chaveroux, C., Lambert-Langlais, S., Chérasse, Y., Averous, J., Parry, L., Carraro, V., Jousse, C., Maurin, A.-C., Bruhat, A., and Fafournoux, P. (2010). Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie, 92, 736-745. [CrossRef] [PubMed] [Google Scholar]
  • Chaveroux, C., Lambert-Langlais, S., Parry, L., Carraro, V., Jousse, C., Maurin, A.-C., Bruhat, A., Marceau, G., Sapin, V., Averous, J., and Fafournoux, P. (2011). Identification of GCN2 as new redox regulator for oxidative stress prevention in vivo. Biochem Biophys Res Commun, 415, 120-124. [CrossRef] [PubMed] [Google Scholar]
  • Costa-Mattioli, M., Gobert, D., Harding, H., Herdy, B., Azzi, M., Bruno, M., Bidinosti, M., Ben Mamou, C., Marcinkiewicz, E., Yoshida, M., Mataka, H., Cuello, A.C., Seidah, N., Sossin, W., Lacaille, J.C., Ron, D., Nader, K., and Sonenberg, N. (2005). Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature, 436, 1166-1173. [CrossRef] [PubMed] [Google Scholar]
  • Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., Cuello, C., Sossin, W., Kaufman, R., Pelletier, J., Rosenblum, K., Krnjeviæ, K., Lacaille, J.C., Nader, K., and Sonenberg, N. (2007). eIF2α Phosphorylation Bidirectionally Regulates the Switch from Short- to Long-Term Synaptic Plasticity and Memory. Cell, 129, 195-206. [CrossRef] [PubMed] [Google Scholar]
  • Dudeck, K.L., Dudenhausen, E.E., Chiles, T.C., Fafournoux, P., and Kilberg, M.S. (1987). Evidence for inherent differences in the system A carrier from normal and transformed liver tissue. Differential inactivation and substrate protection in membrane vesicles and reconstituted proteoliposomes. J Biol Chem, 262, 12565-12569. [PubMed] [Google Scholar]
  • Eyries, M., Montani, D., Girerd, B., Perret, C., Leroy, A., Lonjou, C., Chelghoum, N., Coulet, F., Bonnet, D., Dorfmüller, P., Fadel, E., Sitbon, O., Simonneau, G., Tregouët, D.A., Humbert, M., and Soubrier, F. (2013). EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet, 2014, 46, 65-69. [Google Scholar]
  • Foufelle, F., Girard, J., and Ferré, P. (1998). Glucose regulation of gene expression. Curr Opin Clin Nutr Metab Care, 1, 323-328. [CrossRef] [PubMed] [Google Scholar]
  • Galluzzi, L., Pietrocola, F., Levine, B., and Kroemer, G. (2014). Metabolic Control of Autophagy. Cell, 159, 1263-1276. [CrossRef] [PubMed] [Google Scholar]
  • Gietzen, D.W. (1993). Neural mechanisms in the responses to amino acid deficiency. J Nutr, 123, 610-625. [PubMed] [Google Scholar]
  • Guo, F., and Cavener, D.R. (2007). The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab, 5, 103-114. [CrossRef] [PubMed] [Google Scholar]
  • Hao, S. (2005). Uncharged tRNA and Sensing of Amino Acid Deficiency in Mammalian Piriform Cortex. Science, 307, 1776-1778. [CrossRef] [PubMed] [Google Scholar]
  • Harding, H.P., Calfon, M., Urano, F., Novoa, I., and Ron, D. (2002). Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol, 18, 575-599. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D.F., Bell, J.C., Hettmann, T., Leiden, J.M., and Ron, D. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 11, 619-633. [CrossRef] [PubMed] [Google Scholar]
  • He, C., and Klionsky, D. (2009). Regulation Mechanisms and Signaling Pathways of Autophagy. Annu Rev Genet, 43, 67-93. [CrossRef] [PubMed] [Google Scholar]
  • Hinnebusch, A.G. (1994). The eIF-2 alpha kinases : regulators of protein synthesis in starvation and stress. Semin Cell Biol, 5, 417-426. [CrossRef] [PubMed] [Google Scholar]
  • Kandel, E.R. (2001). The molecular biology of memory storage : a dialogue between genes and synapses. Science, 294, 1030-1038. [CrossRef] [PubMed] [Google Scholar]
  • Kilberg, M.S., Pan, Y.-X., Chen, H., and Leung-Pineda, V. (2005). Nutritional control of gene expression : how mammalian cells respond to amino acid limitation. Annu Rev Nutr, 25, 59-85. [CrossRef] [PubMed] [Google Scholar]
  • Laplante, M., and Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell, 149, 274-293. [CrossRef] [PubMed] [Google Scholar]
  • Leung, P.M., Rogers, Q.R., and Harper, A.E. (1968). Effect of amino acid imbalance on dietary choice in the rat. J Nutr, 95, 483-492. [PubMed] [Google Scholar]
  • Lu, P.D., Harding, H.P., and Ron, D. (2004). Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol, 167, 27-33. [CrossRef] [PubMed] [Google Scholar]
  • Maurin, A.-C., Benani, A., Lorsignol, A., Brenachot, X., Parry, L., Carraro, V., Guissard, C., Averous, J., Jousse, C., Bruhat, A., Chaveroux, C., B’chir, W., Muranishi, Y., Ron, D., Pénicaud, L., and Fafournoux, P. (2014). Hypothalamic eIF2α signaling regulates food intake. Cell Reports, 6, 438-444. [CrossRef] [PubMed] [Google Scholar]
  • Maurin, A.-C., Jousse, C., Averous, J., Parry, L., Bruhat, A., Chérasse, Y., Zeng, H., Zhang, Y., Harding, H.P., Ron, D., and Fafournoux, P. (2005). The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab, 1, 273-277. [CrossRef] [PubMed] [Google Scholar]
  • McLarney, M.J., Pellett, P.L., and Young, V.R. (1996). Pattern of amino acid requirements in humans : an interspecies comparison using published amino acid requirement recommendations. J Nutr, 126, 1871-1882. [PubMed] [Google Scholar]
  • Meijer, A.J., Lorin, S., Blommaart, E.F., and Codogno, P. (2015). Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids, 47, 2037-2063. [CrossRef] [PubMed] [Google Scholar]
  • Mellor, A.L., and Munn, D.H. (2008). Creating immune privilege : active local suppression that benefits friends, but protects foes. Nat Rev Immunol, 8, 74-80. [CrossRef] [PubMed] [Google Scholar]
  • Mortimore, G.E., Pösö, A.R., and Lardeux, B.R. (1989). Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev, 5, 49-70. [CrossRef] [PubMed] [Google Scholar]
  • Munn, D.H., Sharma, M.D., Baban, B., Harding, H.P., Zhang, Y., Ron, D., and Mellor, A.L. (2005). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 22, 633-642. [CrossRef] [PubMed] [Google Scholar]
  • Pégorier, J.-P., Le May, C., and Girard, J. (2004). Control of gene expression by fatty acids. J Nutr, 134, 2444S-2449S. [PubMed] [Google Scholar]
  • Schewe, D.M., and Aguirre-Ghiso, J.A. (2009). Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res, 69, 1545-1552. [CrossRef] [Google Scholar]
  • Shimobayashi, M., and Hall, M.N. (2016). Multiple amino acid sensing inputs to mTORC1. Cell Res, 26, 7-20. [CrossRef] [PubMed] [Google Scholar]
  • Srivastava, S.P., Kumar, K.U., and Kaufman, R.J. (1998). Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem, 273, 2416-2423. [CrossRef] [PubMed] [Google Scholar]
  • Sundrud, M.S., Koralov, S.B., Feuerer, M., Calado, D.P., Kozhaya, A.E., Rhule-Smith, A., Lefebvre, R.E., Unutmaz, D., Mazitschek, R., Waldner, H., Whitman, M., Keller, T., and Rao, A. (2009). Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science, 324, 1334-1338. [CrossRef] [PubMed] [Google Scholar]
  • Tattoli, I., Sorbara, M.T., Vuckovic, D., Ling, A., Soares, F., Carneiro, L.A.M., Yang, C., Emili, A., Philpott, D.J., and Girardin, S.E. (2012). Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe, 11, 563-575. [CrossRef] [PubMed] [Google Scholar]
  • Vattem, K.M., and Wek, R.C. (2004). Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA, 101, 11269-11274. [CrossRef] [Google Scholar]
  • Wang, Y., Ning, Y., Alam, G.N., Jankowski, B.M., Dong, Z., Nör, J.E., and Polverini, P.J. (2013). Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway. Neoplasia, 15, 989-997. [CrossRef] [PubMed] [Google Scholar]
  • Wolfe, R.R., Jahoor, F., and Hartl, W.H. (1989). Protein and amino acid metabolism after injury. Diabetes Metab Rev, 5, 149-164. [CrossRef] [PubMed] [Google Scholar]
  • Xiao, F., Huang, Z., Li, H., Yu, J., Wang, C., Chen, S., Meng, Q., Cheng, Y., Gao, X., Li, J., Liu, Y., and Guo, F. (2011). Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways. Diabetes, 60, 746-756. [CrossRef] [PubMed] [Google Scholar]
  • Ye, J., Kumanova, M., Hart, L.S., Sloane, K., Zhang, H., De Panis, D.N., Bobrovnikova-Marjon, E., Diehl, J.A., Ron, D., and Koumenis, C. (2010). The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. Embo J, 29, 2082-2096. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.