Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 4, 2015
Page(s) 325 - 330
Section Rôle des nutriments dans l’homéostasie énergétique
DOI https://doi.org/10.1051/jbio/2016001
Publié en ligne 28 mars 2016
  • Abbott, C.R., Monteiro, M., Small, C.J., Sajedi, A., Smith, K.L., Parkinson, J.R., Ghatei, M.A., and Bloom, S.R. (2005). The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res, 1044, 127-131. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Anderson, J.W., and Bridges, S.R. (1984). Short-chain fatty acid fermentation products of plant fiber affect glucose metabolism of isolated rat hepatocytes. Proc Soc Exp Biol Med, 177, 372–376. [CrossRef] [PubMed] [Google Scholar]
  • Baird, J.P., Grill, H.J. and Kaplan, J.M. (1997). Intake suppression after hepatic portal glucose infusion : all-or-none effect and its temporal threshold. Am J Physiol, 272, R1454-R1460. [PubMed] [Google Scholar]
  • Berthoud, H.R. (2004). Anatomy and function of sensory hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol, 280, 827-835. [CrossRef] [PubMed] [Google Scholar]
  • Breen, D., Yang, C.S., and Lam, T.K. (2011). Gut-brain signaling : how lipids can trigger the gut. Diabetes Metab Res Rev, 27, 113-119. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Capasso, A, Amodeo, P, Balboni, G, Guerrini, R., Lazarus, L.H., Temussi, P.A., and Salvadori, S. (1997). Design of mu selective opioid dipeptide antagonists. FEBS Lett, 417, 141-144. [CrossRef] [PubMed] [Google Scholar]
  • Clore, J.N., Stillman, J., and Sugerman, H. (2000). Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes, 49, 969–974. [CrossRef] [PubMed] [Google Scholar]
  • Date, Y., Murakami, N., Toshinai, K., Matsukura, S., Niijima, A., Matsuo, H., Kangawa, K., and Nakazato, M. (2002). The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology, 123, 1120-1128. [CrossRef] [PubMed] [Google Scholar]
  • De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., and Mithieux, G. (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156, 84-96. [CrossRef] [PubMed] [Google Scholar]
  • Delaere, F., Magnan, C., and Mithieux, G. (2010). Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. Diabetes Metab, 36, 257-262. [CrossRef] [PubMed] [Google Scholar]
  • Delaere, F., Duchampt, A., Mounien, L., Seyer, P., Duraffourd, C., Zitoun, C., Thorens, B., and Mithieux, G. (2012). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab, 2, 47-53. [CrossRef] [PubMed] [Google Scholar]
  • Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., and Bultman, S.J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the Mammalian colon. Cell Metab, 13, 517–526. [CrossRef] [PubMed] [Google Scholar]
  • Duraffourd, C., De Vadder, F., Goncalves, D., Delaere, F., Penhoat, A., Brusset, B., Rajas, F., Chassard, D., Duchampt, A., Stefanutti, A., Gautier-Stein, A., and Mithieux, G. (2012). Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell, 150, 377-388. [CrossRef] [PubMed] [Google Scholar]
  • Flint, H.J., Scott, K.P., Louis, P., and Duncan, S.H. (2012). The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 9, 577–589. [CrossRef] [PubMed] [Google Scholar]
  • Freeman, S., Bohan, D., Darcel, N., and Raybould, H.E. (2006). Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter. Am J Physiol Gastrointest Liver Physiol, 8, 532-539. [Google Scholar]
  • Gautier-Stein, A., Zitoun, C., Lalli, E., Mithieux, G., and Rajas, F. (2006). Transcriptional regulation of the glucose-6-phosphatase gene by cAMP/vasoactive intestinal peptide in the intestine. Role of HNF4alpha, CREM, HNF1alpha, and C/EBPalpha. J Biol Chem, 281, 31268–31278. [CrossRef] [PubMed] [Google Scholar]
  • Holzer, P. (2009). Opioid receptors in the gastrointestinal tract. Regul Pept, 155, 11-17. [CrossRef] [PubMed] [Google Scholar]
  • Janssen, P., Van den Berghe, P., Verschueren, S., Lehmann, A., Depoortere, I., and Tack, J. (2011). Review article : the role of gastric motility in the control of food intake. Aliment Pharmacol Ther, 33, 880-894. [CrossRef] [PubMed] [Google Scholar]
  • Langhans, W., Grossmann, F., and Geary, N. (2001). Intrameal hepatic-portal infusion of glucose reduces spontaneous meal size in rats. Physiol Behav, 73, 499-507. [CrossRef] [PubMed] [Google Scholar]
  • Lee, V.H. (2000). Membrane transporters. Eur J Pharmacol Sci, 11 (Suppl 2), S41-S50. [CrossRef] [PubMed] [Google Scholar]
  • Little, T.J., and Feinle-Bisset, C. (2011). Effects of dietary fat on appetite and energy intake in health and obesity-oral and gastrointestinal sensory contributions. Physiol Behav, 104, 613-620. [CrossRef] [PubMed] [Google Scholar]
  • Magnusson, I., Rothman, D.L., Katz, L.D., Shulman, R.G., and Shulman, G.I. (1992). Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest, 90, 1323–1327. [CrossRef] [PubMed] [Google Scholar]
  • Mendeloff, A.I. (1977). Dietary fiber and human health. N Engl J Med, 297, 811–814. [CrossRef] [PubMed] [Google Scholar]
  • Mithieux, G., Misery, P., Magnan, C., Pillot, B., Gautier-Stein, A., Bernard, C., Rajas, F., and Zitoun, C. (2005). Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab, 2, 321-329. [CrossRef] [PubMed] [Google Scholar]
  • Moritoki, H., Takei, M., Kotani, M., Kiso, Y., Ishida, Y., and Endoh, K. (1984).Tripeptides acting on opioid receptors in rat colon. Eur J Pharmacol, 100, 29-39. [CrossRef] [PubMed] [Google Scholar]
  • Penhoat, A., Mutel, E., Amigo-Correig, M., Pillot, B., Stefanutti, A., Rajas, F., and Mithieux, G. (2011). Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol Behav, 105, 89-93. [CrossRef] [PubMed] [Google Scholar]
  • Perez-Tilve, D., D’Alessio, D.A. and Tschop, M.H. (2008). A sweet spot for the bariatric surgeon. Cell Metab, 8, 177-179. [CrossRef] [PubMed] [Google Scholar]
  • Pillot, B., Duraffourd, C., Bégeot, M., Joly, A., Luquet, S., Houberdon, I., Naville, D., Vigier, M., Gautier-Stein, A., Magnan, C., and Mithieux, G. (2011). Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice. Plos One, 6, e19107. [CrossRef] [PubMed] [Google Scholar]
  • Ray, T.K., Mansell, K.M., Knight, L.C., Malmud, L.S., Owen, O.E., and Boden, G. (1983). Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. Am J Clin Nutr, 37, 376–381. [PubMed] [Google Scholar]
  • Sala, P.C., Torrinhas, R.S., Heymsfield, S.B. and Waitzberg, D.L. (2012). Type 2 diabetes mellitus : a possible surgically reversible intestinal dysfunction. Obes Surg, 22, 167-176. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schiller, P. (2002). Opioid dipeptide derivatives with a mixed μ antagonist/antagonist, partial μ agonist/ antagonist or μ agonist/partial agonist profile. Am Pept Symp, 6, 229-270. [CrossRef] [Google Scholar]
  • Smith, G.P., Jerome, C., Cushin, B.J., Eterno, R., and Simansky, K.J. (1981). Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science, 213, 1036-1037. [CrossRef] [PubMed] [Google Scholar]
  • Thaler, J.P. and Cummings, D.E. (2009). Minireview : Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology, 150, 2518-2525. [CrossRef] [PubMed] [Google Scholar]
  • Tordoff, M.G. and Friedman, M.I. (1986). Hepatic portal glucose infusions decrease food intake and increase food preference. Am J Physiol, 251, R192-R196. [PubMed] [Google Scholar]
  • Troy, S., Soty, M., Ribeiro, L., Laval, L., Migrenne, S., Fioramonti, X., Pillot, B., Fauveau, V., Aubert, R., Viollet, B., Foretz, M., Leclerc, J., Duchampt, A., Zitoun, C., Thorens, B., Magnan, C., Mithieux, G., and Andreelli, F. (2008). Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab, 8, 201-211. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Vahl, T.P., Tauchi, M., Durler, T.S., Elfers, E.E., Fernandes, T.M., Bitner, R.D., Ellis, K.S., Woods, S.C., Seeley, R.J., Herman, J.P., and D’Alessio, D.A. (2007). Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology, 148, 4965-4973. [CrossRef] [PubMed] [Google Scholar]
  • Zioudrou, C., Streaty, R.A. and Klee, W.A. (1979). Opioid peptides derived from food proteins. The exorphins. J Biol Chem, 254, 2446-1449. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.