Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 209, Numéro 4, 2015
|
|
---|---|---|
Page(s) | 331 - 355 | |
Section | Contribution libre | |
DOI | https://doi.org/10.1051/jbio/2016003 | |
Publié en ligne | 28 mars 2016 |
- Alavian, K.N., Li, H., Collis, L., Bonanni, L., Zeng, L., Sacchetti, S., Lazrove, E., Nabili, P., Flaherty, B., Graham, M., Chen, Y., Messerli, S.M., Mariggio, M.A., Rahner, C., McNay, E., Shore, G.C., Smith, P.J., Hardwick, J.M., and Jonas, E.A. (2011). Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol, 13, 1224-1233. [CrossRef] [PubMed] [Google Scholar]
- Allen, R.T., Hunter, W.J., 3rd, and Agrawal, D.K. (1997). Morphological and biochemical characterization and analysis of apoptosis. J Pharmacol Toxicol Methods, 37, 215-228. [CrossRef] [PubMed] [Google Scholar]
- Allocati, N., Masulli, M., Di Ilio, C., and De Laurenzi, V. (2015). Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis, 6, e1609. [CrossRef] [PubMed] [Google Scholar]
- Ameisen, J.C. (2005). Selective “death programs” or pleiotropic “life programs”? Looking for programmed cell death in the light of evolution. J Soc Biol, 199, 175-189. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ameisen, J.C., Idziorek, T., Billaut-Mulot, O., Loyens, M., Tissier, J.P., Potentier, A., and Ouaissi, A. (1995). Apoptosis in a unicellular eukaryote (Trypanosoma cruzi) : implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ, 2, 285-300. [PubMed] [Google Scholar]
- Aouacheria, A., Arnaud, E., Venet, S., Lalle, P., Gouy, M., Rigal, D., and Gillet, G. (2001). Nrh, a human homologue of Nr-13 associates with Bcl-Xs and is an inhibitor of apoptosis. Oncogene, 20, 5846-5855. [CrossRef] [PubMed] [Google Scholar]
- Aouacheria, A., Brunet, F., and Gouy, M. (2005). Phylogenomics of life-or-death switches in multicellular animals: BCL-2, BH3-Only, and BNip families of apoptotic regulators. Mol Biol Evol, 22, 2395-2416. [CrossRef] [PubMed] [Google Scholar]
- Aouacheria, A., Rech de Laval, V., Combet, C., and Hardwick, J.M. (2013). Evolution of BCL-2 homology motifs: homology versus homoplasy. Trends Cell Biol, 23, 103-111. [CrossRef] [PubMed] [Google Scholar]
- Aouacheria, A., Combet, C., Tompa, P., and Hardwick, J.M. (2015). Redefining the BH3 Death Domain as a “Short Linear Motif”. Trends Biochem Sci, 40, 736-48. [CrossRef] [PubMed] [Google Scholar]
- Autret, A., and Martin, S.J. (2009). Emerging role for members of the BCL-2 family in mitochondrial morphogenesis. Mol Cell, 36, 355-363. [CrossRef] [PubMed] [Google Scholar]
- Bae, J., Leo, C.P., Hsu, S.Y., and Hsueh, A.J. (2000). MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem, 275, 25255-25261. [CrossRef] [PubMed] [Google Scholar]
- Bidle, K.D., and Falkowski, P.G. (2004). Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol, 2, 643-655. [CrossRef] [PubMed] [Google Scholar]
- Bleicken, S., Wagner, C., and Garcia-Saez, A.J. (2013). Mechanistic differences in the membrane activity of Bax and Bcl-xL correlate with their opposing roles in apoptosis. Biophys J, 104, 421-431. [CrossRef] [PubMed] [Google Scholar]
- Boise, L.H., Gonzalez-Garcia, M., Postema, C.E., Ding, L., Lindsten, T., Turka, L.A., Mao, X., Nunez, G., and Thompson, C.B. (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell, 74, 597-608. [CrossRef] [PubMed] [Google Scholar]
- Certo, M., Del Gaizo Moore, V., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S.A., and Letai, A. (2006). Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 9, 351-365. [CrossRef] [PubMed] [Google Scholar]
- Chen, Y.B., Aon, M.A., Hsu, Y.T., Soane, L., Teng, X., McCaffery, J.M., Cheng, W.C., Qi, B., Li, H., Alavian, K.N., Dayhoff-Brannigan, M., Zou, S., Pineda, F.J., O’Rourke, B., Ko, Y.H., Pedersen, P.L., Kaczmarek, L.K., Jonas, E.A., and Hardwick, J.M. (2011). Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol, 195, 263-276. [CrossRef] [PubMed] [Google Scholar]
- Chen, Z.X., and Pervaiz, S. (2007). BCL-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ, 14, 1617-1627. [CrossRef] [PubMed] [Google Scholar]
- Cheng, E.H., Kirsch, D.G., Clem, R.J., Ravi, R., Kastan, M.B., Bedi, A., Ueno, K., and Hardwick, J.M. (1997). Conversion of BCL-2 to a Bax-like death effector by caspases. Science, 278, 1966-1968. [CrossRef] [PubMed] [Google Scholar]
- Cherlonneix, L. (2007). Research on self-initiation of cell death towards the end of the 19th century. Gesnerus, 64, 193-218. [PubMed] [Google Scholar]
- Chittenden, T., Harrington, E.A., O’Connor, R., Flemington, C., Lutz, R.J., Evan, G.I., and Guild, B.C. (1995). Induction of apoptosis by the BCL-2 homologue Bak. Nature, 374, 733-736. [CrossRef] [PubMed] [Google Scholar]
- Clem, R.J., Cheng, E.H., Karp, C.L., Kirsch, D.G., Ueno, K., Takahashi, A., Kastan, M.B., Griffin, D.E., Earnshaw, W.C., Veliuona, M.A., and Hardwick, J.M., 1998. Modulation of cell death by Bcl-XL through caspase interaction. Proc Nat Acad Sci USA, 95, 554-559. [CrossRef] [Google Scholar]
- Cosentino, K., Ros, U., and Garcia-Saez, A.J. (2015). Assembling the puzzle : Oligomerization of alpha-pore forming proteins in membranes. Biochim Biophys Acta, DOI : 10.1016/j.bbamem.2015.09.013. [Epub ahead of print] [Google Scholar]
- Curtin, J.F., and Cotter, T.G. (2003). Apoptosis: Historical perspectives. Essays Biochem, 39, 1-10. [CrossRef] [PubMed] [Google Scholar]
- Czabotar, P.E., Lessene, G., Strasser, A., and Adams, J.M. (2014). Control of apoptosis by the BCL-2 protein family : implications for physiology and therapy. Nature reviews. Mol Cell Biol, 15, 49-63. [Google Scholar]
- Danial, N.N., Gramm, C.F., Scorrano, L., Zhang, C.Y., Krauss, S., Ranger, A.M., Datta, S.R., Greenberg, M.E., Licklider, L.J., Lowell, B.B., Gygi, S.P., and Korsmeyer, S.J. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature, 424, 952-956. [CrossRef] [PubMed] [Google Scholar]
- Deponte, M. (2008). Programmed cell death in protists. Biochim Biophys Acta, 1783, 1396-1405. [CrossRef] [PubMed] [Google Scholar]
- Farrow, S.N., White, J.H., Martinou, I., Raven, T., Pun, K.T., Grinham, C.J., Martinou, J.C., and Brown, R. (1995). Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K. Nature, 374, 731-733. [CrossRef] [PubMed] [Google Scholar]
- Frohlich, K.U., and Madeo, F. (2000). Apoptosis in yeast–a monocellular organism exhibits altruistic behaviour. FEBS Lett, 473, 6-9. [CrossRef] [PubMed] [Google Scholar]
- Galluzzi, L., Morselli, E., Vicencio, J.M., Kepp, O., Joza, N., Tajeddine, N., and Kroemer, G. (2008). Life, death and burial : multifaceted impact of autophagy. Biochem Soc Trans, 36, 786-790. [CrossRef] [PubMed] [Google Scholar]
- Galluzzi, L., Vitale, I., Abrams, J.M., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., Dawson, T.M., Dawson, V.L., El-Deiry, W.S., Fulda, S., Gottlieb, E., Green, D.R., Hengartner, M.O., Kepp, O., Knight, R.A., Kumar, S., Lipton, S.A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nunez, G., Peter, M.E., Piacentini, M., Rubinsztein, D.C., Shi, Y., Simon, H.U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G., and Kroemer, G. (2012). Molecular definitions of cell death subroutines : recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ, 19, 107-120. [CrossRef] [PubMed] [Google Scholar]
- Galluzzi, L., Bravo-San Pedro, J.M., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Alnemri, E.S., Altucci, L., Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E.H., Bazan, N.G., Bertrand, M.J., Bianchi, K., Blagosklonny, M.V., Blomgren, K., Borner, C., Bredesen, D.E., Brenner, C., Campanella, M., Candi, E., Cecconi, F., Chan, F.K., Chandel, N.S., Cheng, E.H., Chipuk, J.E., Cidlowski, J.A., Ciechanover, A., Dawson, T.M., Dawson, V.L., De Laurenzi, V., De Maria, R., Debatin, K.M., Di Daniele, N., Dixit, V.M., Dynlacht, B.D., El-Deiry, W.S., Fimia, G.M., Flavell, R.A., Fulda, S., Garrido, C., Gougeon, M.L., Green, D.R., Gronemeyer, H., Hajnoczky, G., Hardwick, J.M., Hengartner, M.O., Ichijo, H., Joseph, B., Jost, P.J., Kaufmann, T., Kepp, O., Klionsky, D.J., Knight, R.A., Kumar, S., Lemasters, J.J., Levine, B., Linkermann, A., Lipton, S.A., Lockshin, R.A., Lopez-Otin, C., Lugli, E., Madeo, F., Malorni, W., Marine, J.C., Martin, S.J., Martinou, J.C., Medema, J.P., Meier, P., Melino, S., Mizushima, N., Moll, U., Munoz-Pinedo, C., Nunez, G., Oberst, A., Panaretakis, T., Penninger, J.M., Peter, M.E., Piacentini, M., Pinton, P., Prehn, J.H., Puthalakath, H., Rabinovich, G.A., Ravichandran, K.S., Rizzuto, R., Rodrigues, C.M., Rubinsztein, D.C., Rudel, T., Shi, Y., Simon, H.U., Stockwell, B.R., Szabadkai, G., Tait, S.W., Tang, H.L., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E.F., Walczak, H., White, E., Wood, W.G., Yuan, J., Zakeri, Z., Zhivotovsky, B., Melino, G., and Kroemer, G. (2015). Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 22, 58-73. [Google Scholar]
- Gimenez-Cassina, A., and Danial, N.N. (2015). Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins. Trends Endocrinol Metab, 26, 165-175. [CrossRef] [PubMed] [Google Scholar]
- Glucksmann, A. (1951). Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc, 26, 59-86. [CrossRef] [PubMed] [Google Scholar]
- Goldschneider, D. and Mehlen, P. (2010). Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene, 29, 1865-1882. [CrossRef] [PubMed] [Google Scholar]
- Graham, S.C., Bahar, M.W., Cooray, S., Chen, R.A., Whalen, D.M., Abrescia, N.G., Alderton, D., Owens, R.J., Stuart, D.I., Smith, G.L., and Grimes, J.M., (2008). Vaccinia virus proteins A52 and B14 Share a BCL-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog, 4, e1000128. [CrossRef] [PubMed] [Google Scholar]
- Gross, A. (2006). BID as a double agent in cell life and death. Cell Cycle, 5, 582-584. [CrossRef] [PubMed] [Google Scholar]
- Guillemin, Y., Lopez, J., Gimenez, D., Fuertes, G., Valero, J.G., Blum, L., Gonzalo, P., Salgado, J., Girard-Egrot, A., and Aouacheria, A. (2010). Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence. PloS One, 5, e9066. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer : the next generation. Cell, 144, 646-674. [CrossRef] [PubMed] [Google Scholar]
- Happo, L., Strasser, A., and Cory, S. (2012). BH3-only proteins in apoptosis at a glance. J Cell Sci, 125, 1081-1087. [CrossRef] [PubMed] [Google Scholar]
- Hardwick, J.M., and Youle, R.J. (2009). SnapShot : BCL-2 proteins. Cell, 138, 404, 404 e401. [CrossRef] [PubMed] [Google Scholar]
- Hardwick, J.M., and Soane, L. (2013). Multiple functions of BCL-2 family proteins. Cold Spring Harbor Perspect Biol, 5, a008722. [CrossRef] [Google Scholar]
- Hockings, C., Anwari, K., Ninnis, R.L., Brouwer, J., O’Hely, M., Evangelista, M., Hinds, M.G., Czabotar, P.E., Lee, E.F., Fairlie, W.D., Dewson, G., and Kluck, R.M. (2015). Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death Dis, 6, e1735. [CrossRef] [PubMed] [Google Scholar]
- Hoetelmans, R., van Slooten, H.J., Keijzer, R., Erkeland, S., van de Velde, C.J., and Dierendonck, J.H. (2000). BCL-2 and Bax proteins are present in interphase nuclei of mammalian cells. Cell Death Differ, 7, 384-392. [Google Scholar]
- Hollville, E., Carroll, R.G., Cullen, S.P., and Martin, S.J. (2014). BCL-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell, 55, 451-466. [CrossRef] [PubMed] [Google Scholar]
- Inohara, N., Gourley, T.S., Carrio, R., Muniz, M., Merino, J., Garcia, I., Koseki, T., Hu, Y., Chen, S., and Nunez, G. (1998). Diva, a BCL-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J Biol Chem, 273, 32479-32486. [CrossRef] [PubMed] [Google Scholar]
- Ishizaki, Y., Jacobson, M.D., and Raff, M.C. (1998). A role for caspases in lens fiber differentiation. J Cell Biol, 140, 153-158. [CrossRef] [PubMed] [Google Scholar]
- Jacob, F. (1977). Evolution and tinkering. Science, 196, 1161-1166. [CrossRef] [PubMed] [Google Scholar]
- Jensen, S.A., Calvert, A.E., Volpert, G., Kouri, F.M., Hurley, L.A., Luciano, J.P., Wu, Y., Chalastanis, A., Futerman, A.H., and Stegh, A.H. (2014). Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc Natl Acad Sci USA, 111, 5682-5687. [CrossRef] [Google Scholar]
- Karbowski, M., Norris, K.L., Cleland, M.M., Jeong, S.Y., and Youle, R.J. (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature, 443, 658-662. [CrossRef] [PubMed] [Google Scholar]
- Ke, N., Godzik, A., and Reed, J.C. (2001). Bcl-B, a novel BCL-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem, 276, 12481-12484. [CrossRef] [PubMed] [Google Scholar]
- Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis : a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit J Cancer, 26, 239-257. [CrossRef] [PubMed] [Google Scholar]
- Korsmeyer, S.J., Shutter, J.R., Veis, D.J., Merry, D.E., and Oltvai, Z.N. (1993). BCL-2/Bax : a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol, 4, 327-332. [PubMed] [Google Scholar]
- Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, P., Green, D.R., Hengartner, M., Knight, R.A., Kumar, S., Lipton, S.A., Malorni, W., Nunez, G., Peter, M.E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B., and Melino, G. (2009). Classification of cell death : recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ, 16, 3-11. [Google Scholar]
- Kucharczak, J.F., Simmons, M.J., Duckett, C.S., and Gelinas, C. (2005). Constitutive proteasome-mediated turnover of Bfl-1/A1 and its processing in response to TNF receptor activation in FL5.12 pro-B cells convert it into a prodeath factor. Cell Death Differ, 12, 1225-1239. [Google Scholar]
- Laulier, C., and Lopez, B.S. (2012). The secret life of BCL-2 : apoptosis-independent inhibition of DNA repair by BCL-2 family members. Mutat Res, 751, 247-257. [CrossRef] [PubMed] [Google Scholar]
- Lee, E.F., Dewson, G., Evangelista, M., Pettikiriarachchi, A., Gold, G.J., Zhu, H., Colman, P.M., Fairlie, W.D. and (2014). The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (BCL-2) proteins depend on structural differences in their BCL-2 homology 3 (BH3) domains. J Biol Chem, 289, 36001-36017. [CrossRef] [PubMed] [Google Scholar]
- Lee, R., Chen, J., Matthews, C.P., McDougall, J.K., and Neiman, P.E. (2001). Characterization of NR13-related human cell death regulator, Boo/Diva, in normal and cancer tissues. Biochim Biophys Acta, 1520, 187-194. [CrossRef] [PubMed] [Google Scholar]
- Levine, B., Sinha, S., and Kroemer, G. (2008). BCL-2 family members : dual regulators of apoptosis and autophagy. Autophagy, 4, 600-606. [CrossRef] [PubMed] [Google Scholar]
- Lewis, J., Oyler, G.A., Ueno, K., Fannjiang, Y.R., Chau, B.N., Vornov, J., Korsmeyer, S.J., Zou, S., and Hardwick, J.M. (1999). Inhibition of virus-induced neuronal apoptosis by Bax. Nat Med, 5, 832-835. [CrossRef] [PubMed] [Google Scholar]
- Lewis, K. (2000). Programmed death in bacteria. Microbiol Mol Biol Rev, 64, 503-514. [CrossRef] [PubMed] [Google Scholar]
- Llambi, F., Moldoveanu, T., Tait, S.W., Bouchier-Hayes, L., Temirov, J., McCormick, L.L., Dillon, C.P., and Green, D.R. (2011). A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell, 44, 517-531. [CrossRef] [PubMed] [Google Scholar]
- Lockshin, R.A., and Williams, C.M. (1964). Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10, 643-649. [CrossRef] [Google Scholar]
- Los, M., Stroh, C., Janicke, R.U., Engels, I.H., and Schulze-Osthoff, K. (2001). Caspases: more than just killers? Trends Immunol, 22, 31-34. [CrossRef] [PubMed] [Google Scholar]
- Lowman, X.H., McDonnell, M.A., Kosloske, A., Odumade, O.A., Jenness, C., Karim, C.B., Jemmerson, R., and Kelekar, A. (2010). The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol Cell, 40, 823-833. [CrossRef] [PubMed] [Google Scholar]
- Maghsoudi, N., Zakeri, Z., and Lockshin, R.A. (2012). Programmed cell death and apoptosis–where it came from and where it is going: from Elie Metchnikoff to the control of caspases. Exp Oncol, 34, 146-152. [PubMed] [Google Scholar]
- Marino, G., Niso-Santano, M., Baehrecke, E.H., and Kroemer, G. (2014). Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 15, 81-94. [CrossRef] [PubMed] [Google Scholar]
- Meyer, S.N., Amoyel, M., Bergantinos, C., de la Cova, C., Schertel, C., Basler, K., and Johnston, L.A. (2014). An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science, 346, 1258236. [CrossRef] [PubMed] [Google Scholar]
- Michels, J., O’Neill, J.W., Dallman, C.L., Mouzakiti, A., Habens, F., Brimmell, M., Zhang, K.Y., Craig, R.W., Marcusson, E.G., Johnson, P.W., and Packham, G. (2004). Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene, 23, 4818-4827. [CrossRef] [PubMed] [Google Scholar]
- Moldoveanu, T., Follis, A.V., Kriwacki, R.W., and Green, D.R. (2014). Many players in BCL-2 family affairs. Trends Biochem Sci, 39, 101-111. [CrossRef] [PubMed] [Google Scholar]
- Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.L., Ng, S.L., and Fesik, S.W. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature, 381, 335-341. [CrossRef] [PubMed] [Google Scholar]
- Murakawa, T., Yamaguchi, O., Hashimoto, A., Hikoso, S., Takeda, T., Oka, T., Yasui, H., Ueda, H., Akazawa, Y., Nakayama, H., Taneike, M., Misaka, T., Omiya, S., Shah, A.M., Yamamoto, A., Nishida, K., Ohsumi, Y., Okamoto, K., Sakata, Y., and Otsu, K. (2015). BCL-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun, 6, 7527. [CrossRef] [PubMed] [Google Scholar]
- Nedelcu, A.M., Driscoll, W.W., Durand, P.M., Herron, M.D., and Rashidi, A., 2011. On the paradigm of altruistic suicide in the unicellular world. Evolution, 65, 3-20. [CrossRef] [PubMed] [Google Scholar]
- Neidel, S., Maluquer de Motes, C., Mansur, D.S., Strnadova, P., Smith, G.L., Graham, S.C. (2015). Vaccinia Virus Protein A49 Is an Unexpected Member of the B-cell Lymphoma (Bcl)-2 Protein Family. J Biol Chem, 290, 5991-6002. [CrossRef] [PubMed] [Google Scholar]
- Nikoletopoulou, V., Markaki, M., Palikaras, K., and Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta, 1833, 3448-3459. [CrossRef] [PubMed] [Google Scholar]
- Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Deckwerth, T.L., Dinges, J., Hajduk, P.J., Joseph, M.K., Kitada, S., Korsmeyer, S.J., Kunzer, A.R., Letai, A., Li, C., Mitten, M.J., Nettesheim, D.G., Ng, S., Nimmer, P.M., O’Connor, J.M., Oleksijew, A., Petros, A.M., Reed, J.C., Shen, W., Tahir, S.K., Thompson, C.B., Tomaselli, K.J., Wang, B., Wendt, M.D., Zhang, H., Fesik, S.W., and Rosenberg, S.H. (2005). An inhibitor of BCL-2 family proteins induces regression of solid tumours. Nature, 435, 677-681. [CrossRef] [PubMed] [Google Scholar]
- Pasparakis, M., and Vandenabeele, P. (2015). Necroptosis and its role in inflammation. Nature, 517, 311-320. [CrossRef] [PubMed] [Google Scholar]
- Perciavalle, R.M., Stewart, D.P., Koss, B., Lynch, J., Milasta, S., Bathina, M., Temirov, J., Cleland, M.M., Pelletier, S., Schuetz, J.D., Youle, R.J., Green, D.R., and Opferman, J.T. (2012). Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol, 14, 575-583. [CrossRef] [PubMed] [Google Scholar]
- Petros, A.M., Olejniczak, E.T., and Fesik, S.W. (2004). Structural biology of the BCL-2 family of proteins. Biochim Biophys Acta, 1644, 83-94. [CrossRef] [PubMed] [Google Scholar]
- Pinton, P., and Rizzuto, R. (2006). BCL-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ, 13, 1409-1418. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Popgeorgiev, N., Bonneau, B., Ferri, K.F., Prudent, J., Thibaut, J., and Gillet, G. (2011). The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula. Dev Cell, 20, 663-676. [CrossRef] [PubMed] [Google Scholar]
- Ramulu, H.G., Raoult, D., and Pontarotti, P. (2012). The rhizome of life: what about metazoa? Frontiers Cell Infect Microbiol, 2, 50. [CrossRef] [Google Scholar]
- Ravid, L., and Arama, E. (2011). There is more to life than death: a moonlighting function of a BCL-2 member. Dev Cell, 20, 575-576. [CrossRef] [PubMed] [Google Scholar]
- Rech de Laval, V., Deleage, G., Aouacheria, A., and Combet, C. (2014). BCL2DB: database of BCL-2 family members and BH3-only proteins. Database (Oxford), 6, 2014. [Google Scholar]
- Reed, J.C. (2006). Proapoptotic multidomain BCL-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ, 13, 1378-1386. [Google Scholar]
- Reynolds, A.S. (2014). The deaths of a cell: how language and metaphor influence the science of cell death. Stud Hist Philos Biol Biomed Sci, 48, 175-184. [CrossRef] [PubMed] [Google Scholar]
- Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. Nature reviews. Mol Cell Biol, 8, 405-413. [Google Scholar]
- Rongvaux, A., Jackson, R., Harman, C.C., Li, T., West, A.P., de Zoete, M.R., Wu, Y., Yordy, B., Lakhani, S.A., Kuan, C.Y., Taniguchi, T., Shadel, G.S., Chen, Z.J., Iwasaki, A., and Flavell, R.A. (2014). Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell, 159, 1563-1577. [CrossRef] [PubMed] [Google Scholar]
- Schweichel, J.U., and Merker, H.J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology, 7, 253-266. [CrossRef] [PubMed] [Google Scholar]
- Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death Differ, 22, 526-539. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Shamas-Din, A., Brahmbhatt, H., Leber, B., and Andrews, D.W. (2011). BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta, 1813, 508-520. [CrossRef] [PubMed] [Google Scholar]
- Shrestha, A., and Megeney, L.A. (2012). The non-death role of metacaspase proteases. Front Oncol, 2, 78. [CrossRef] [PubMed] [Google Scholar]
- Sinha, S., and Levine, B. (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene, 27 Suppl 1, S137-148. [CrossRef] [PubMed] [Google Scholar]
- Song, Q., Kuang, Y., Dixit, V.M., and Vincenz, C. (1999). Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J, 18, 167-178. [CrossRef] [PubMed] [Google Scholar]
- Suzuki, M., Youle, R.J., and Tjandra, N. (2000). Structure of Bax: coregulation of dimer formation and intracellular localization. Cell, 103, 645-654. [CrossRef] [PubMed] [Google Scholar]
- Tait, S.W., and Green, D.R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat RevMol Cell Biol, 11, 621-632. [CrossRef] [Google Scholar]
- Tanouchi, Y., Lee, A.J., Meredith, H., and You, L. (2013). Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol, 21, 265-270. [CrossRef] [PubMed] [Google Scholar]
- Tichy, E.D., Stephan, Z.A., Osterburg, A., Noel, G., and Stambrook, P.J. (2013). Mouse embryonic stem cells undergo charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment. Stem Cell Res, 10, 428-441. [CrossRef] [PubMed] [Google Scholar]
- van Doorn, W.G., Beers, E.P., Dangl, J.L., Franklin-Tong, V.E., Gallois, P., Hara-Nishimura, I., Jones, A.M., Kawai-Yamada, M., Lam, E., Mundy, J., Mur, L.A., Petersen, M., Smertenko, A., Taliansky, M., Van Breusegem, F., Wolpert, T., Woltering, E., Zhivotovsky, B., and Bozhkov, P.V. (2011). Morphological classification of plant cell deaths. Cell Death Differ, 18, 1241-1246. [CrossRef] [PubMed] [Google Scholar]
- Vaux, D.L. (2002). Apoptosis timeline. Cell Death Differ, 9, 349-354. [CrossRef] [PubMed] [Google Scholar]
- Voskoboinik, I., Smyth, M.J., and Trapani, J.A. (2006). Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol, 6, 940-952. [CrossRef] [PubMed] [Google Scholar]
- Wang, X., Bathina, M., Lynch, J., Koss, B., Calabrese, C., Frase, S., Schuetz, J.D., Rehg, J.E., and Opferman, J.T. (2013). Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev, 27, 1351-1364. [CrossRef] [PubMed] [Google Scholar]
- Westphal, D., Kluck, R.M., and Dewson, G. (2014). Building blocks of the apoptotic pore : how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ, 21, 196-205. [CrossRef] [PubMed] [Google Scholar]
- White, E. (2008). Autophagic cell death unraveled: Pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy, 4, 399-401. [CrossRef] [PubMed] [Google Scholar]
- White, M.J., McArthur, K., Metcalf, D., Lane, R.M., Cambier, J.C., Herold, M.J., van Delft, M.F., Bedoui, S., Lessene, G., Ritchie, M.E., Huang, D.C., and Kile, B.T. (2014). Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell, 159, 1549-1562. [CrossRef] [PubMed] [Google Scholar]
- Wirawan, E., Vanden Berghe, T., Lippens, S., Agostinis, P., and Vandenabeele, P. (2012). Autophagy : for better or for worse. Cell Res, 22, 43-61. [CrossRef] [PubMed] [Google Scholar]
- Xue, D., and Horvitz, H.R. (1997). Cænorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature, 390, 305-308. [CrossRef] [PubMed] [Google Scholar]
- Zamzami, N., Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora’s box opens. Nature reviews. Mol Cell Biol, 2, 67-71. [Google Scholar]
- Zhang, H., Holzgreve, W., and De Geyter, C. (2001). Bcl2-L-10, a novel anti-apoptotic member of the BCL-2 family, blocks apoptosis in the mitochondria death pathway but not in the death receptor pathway. Hum Mol Genet, 10, 2329-2339. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.