Accès gratuit
Biologie Aujourd'hui
Volume 210, Numéro 1, 2016
Page(s) 37 - 44
Section Matrice extracellulaire
Publié en ligne 10 juin 2016
  • Berger, C.M., Gaume, X., Bouvet, P. (2015). Biochimie, 113, 78-85. [CrossRef] [PubMed] [Google Scholar]
  • Bhavanandan, V.P., Davidson, E.A. (1975). Mucopolysaccharides associated with nuclei of cultured mammalian cells. Proc Natl Acad Sci USA, 72, 2032-2036. [CrossRef] [Google Scholar]
  • Blaber, M., DiSalvo, J., and Thomas, K.A. (1996). X-ray crystal structure of human acidic fibroblast growth factor. Biochemistry, 35, 2086-2094. [CrossRef] [PubMed] [Google Scholar]
  • Bonnans, C., Chou, J., and Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 15, 786-801. [CrossRef] [PubMed] [Google Scholar]
  • Bülow, H.E., Hobert, O. (2006). The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol, 22, 375-407. [CrossRef] [PubMed] [Google Scholar]
  • Capurro, M.I., Wu, P., Shi, W., Li, F., Jia, A., and Filmus, J. (2008). Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell, 14, 700-711. [CrossRef] [PubMed] [Google Scholar]
  • Cauwe, B., Opdenakker, G. (2010). Intracellular substrate cleavage : a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol, 45, 351-423. [CrossRef] [PubMed] [Google Scholar]
  • Cawston, T.E., Young, D.A. (2010). Proteinases involved in matrix turnover during cartilage and bone breakdown. Young Cell Tissue Res, 339, 221-235. [CrossRef] [PubMed] [Google Scholar]
  • Chen, L., Sanderson, R.D. (2009). Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One, 4, e4947. [CrossRef] [PubMed] [Google Scholar]
  • Cheng, F., Petersson, P., Arroyo-Yanguas, Y., and Westergren-Thorsson, G. (2001). Differences in the uptake and nuclear localization of anti-proliferative heparan sulfate between human lung fibroblasts and human lung carcinoma cells. J Cell Biochem, 83, 4597-606. [CrossRef] [Google Scholar]
  • Cheng, F., Cappai, R., Lidfeldt, J., Belting, M., Fransson, L.Å., and Mani, K. (2014). Amyloid precursor protein (APP)/APP-like protein 2 (APLP2) expression is required to initiate endosome-nucleus-autophagosome trafficking of glypican-1-derived heparan sulfate. J Biol Chem, 289, 20871-20878. [CrossRef] [PubMed] [Google Scholar]
  • Choi, S., Lee, E., Kwon, S., Park, H., Yi, J.Y., Kim, S., Han, I.O., Yun, Y., and Oh, E.S. (2005). Transmembrane domain-induced oligomerization is crucial for the functions of syndecan-2 and syndecan-4. J Biol Chem, 280, 42573-42579. [CrossRef] [PubMed] [Google Scholar]
  • Couchman, J.R. (2010). Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol, 26, 89-114. [CrossRef] [PubMed] [Google Scholar]
  • Courtois, G., Israël, A. (2004). Pathologies humaines associées à des dysfonctionnements de la voie de signalisation NF-κB. J Soc Biol, 198, 93-96. [PubMed] [Google Scholar]
  • Dicker, K.T., Gurski, L.A., Pradhan-Bhatt, S., Witt, R.L., Farach-Carson, M.C., and Jia, X. (2014). Hyaluronan : a simple polysaccharide with diverse biological functions. Acta Biomater, 10, 1558-1570. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Dudás, J., Ramadori, G., Knittel, T., Neubauer, K., Raddatz, D., Egedy, K., and Kovalszky, I. (2000). Effect of heparin and liver heparan sulphate on interaction of HepG2-derived transcription factors and their cis-acting elements : altered potential of hepatocellular carcinoma heparan sulphate. Biochem J, 15, 350. [Google Scholar]
  • Eggli, P.S., and Graber, W. (1995). Association of hyaluronan with rat vascular endothelial and smooth muscle cells. J Histochem Cytochem, 43, 689-697. [CrossRef] [PubMed] [Google Scholar]
  • Eguchi, T., Kubota, S., Kawata, K., Mukudai, Y., Uehara, J., Ohgawara, T., Ibaragi, S., Sasaki, A., Kuboki, T., and Takigawa, M. (2008). Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol Cell Biol, 28, 2391-2413. [CrossRef] [PubMed] [Google Scholar]
  • Elfenbein, A., and Simons, M. (2013). Syndecan-4 signaling at a glance. J Cell Sci, 126, 3799-3804. [CrossRef] [PubMed] [Google Scholar]
  • Esko, J.D., Kimata, K., Lindahl, U. (2009). Proteoglycans and Sulfated Glycosamino-glycans. In: Essentials of Glycobiology, 2nd edition. Varki, A., Cummings, R.D., Esko J.D., Freeze, H.H.,, Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., eds., Cold Spring Harbor Laboratory Press, Nex York, Chap. 16. [Google Scholar]
  • Evanko, S.P., Wight., T.N. (1999). Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem, 47, 1331-1342. [CrossRef] [PubMed] [Google Scholar]
  • Filmus, J., Capurro, M., and Rast, J. (2008) Glypicans. Genome Biol, 9, 224. [CrossRef] [PubMed] [Google Scholar]
  • Filmus, J., Capurro, M. (2014). The role of glypicans in Hedgehog signaling. Matrix Biol, 35, 248-252. [CrossRef] [PubMed] [Google Scholar]
  • Hayata, T., Nakamoto, T., Ezura, Y., and Noda, M. (2008). Ciz, a transcription factor with a nucleocytoplasmic shuttling activity, interacts with C-propeptides of type I collagen. Biochem Biophys Res Commun, 368, 205-210. [CrossRef] [PubMed] [Google Scholar]
  • Iozzo, R.V., Schaefer, L. (2015). Proteoglycan form and function : A comprehensive nomenclature of proteoglycans. Matrix Biol, 42, 11-55. [CrossRef] [PubMed] [Google Scholar]
  • Ishihara, M., Fedarko, N.S., and Conrad, H.E. (1986). Transport of heparan sulfate into the nuclei of hepatocytes. J Biol Chem, 261, 13575-13580. [PubMed] [Google Scholar]
  • Itoh, Y. (2015). Membrane-type matrix metalloproteinases; Their functions and regulations. Matrix Biol, 44-46, 207-223. [Google Scholar]
  • Kovalszky, I., Dudás, J., Oláh-Nagy, J., Pogány, G., Töváry, J., Timár, J., Kopper, L., Jeney, A., and Iozzo, R.V. (1998). Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem, 183, 11-23. [CrossRef] [PubMed] [Google Scholar]
  • Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., and Corbett, A.H. (2007). Classical nuclear localization signals : definition, function, and interaction with importin alpha. J Biol Chem, 282, 5101-5105. [CrossRef] [PubMed] [Google Scholar]
  • Li, W., Nellaiappan, K., Strassmaier, T., Graham, L., Thomas K.M., and Kagan H.M. (1997). Localization and activity of lysyl oxidase within nuclei of fibrogenic cells. Proc Natl Acad Sci USA, 94, 12817-12822. [CrossRef] [Google Scholar]
  • Liang, Y., Häring, M., Roughley, P.J., Margolis, R.K, and Margolis, R.U. (1997). Glypican and biglycan in the nuclei of neurons and glioma cells : presence of functional nuclear localization signals and dynamic changes in glypican during the cell cycle. J Cell Biol, 139, 851-864. [CrossRef] [PubMed] [Google Scholar]
  • Mannello, F., Medda, V. (2012). Nuclear localization of matrix metalloproteinases. Progr Histochem Cytochem, 47, 27-58 [CrossRef] [Google Scholar]
  • Manon-Jensen, T., Itoh, Y., and Couchman, J.R. (2010). Proteoglycans in health and disease : the multiple roles of syndecan shedding. FEBS J, 277, 3876-3889. [CrossRef] [PubMed] [Google Scholar]
  • Marchant, D.J., Bellac, C.L., Moraes, T.J., Wadsworth SJ., Dufour, A., Butler, G.S., Bilawchuk, L.M., Hendry, R.G., Robertson, A.G., Cheung, C.T., Ng, J., Ang, L., Luo, Z., Heilbron, K., Norris, M.J., Duan, W., Bucyk, T., Karpov, A., Devel, L., Georgiadis, D., Hegele, R.G., Luo, H., Granville, D.J., Dive, V., McManus, B.M., and Overall, C.M. (2014). A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat Med, 20, 493-502. [CrossRef] [PubMed] [Google Scholar]
  • Marfori, M., Mynott, A., Ellis, J.J., Mehdi, A.M., Saunders, N.F., Curmi, P.M., Forwood, J.K., Bodén, M., and Kobe, B. (2011). Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta, 1813, 1562-1577. [CrossRef] [PubMed] [Google Scholar]
  • Naba, A., Hoersch, S., and Hynes, R.O. (2012). Towards definition of an ECM parts list: an advance on GO categories. Matrix Biol, 31, 371-372. [CrossRef] [PubMed] [Google Scholar]
  • Nellaiappan, K., Risitano, A., Liu, G., Nicklas, G., and Kagan, H.M. (2000). Fully processed lysyl oxidase catalyst translocates from the extracellular space into nuclei of aortic smooth muscle cells. J Cell Biochem, 79, 576-582. [CrossRef] [PubMed] [Google Scholar]
  • Nishioka, T., Eustace, A., and West, C. (2012). Lysyl oxidase: from basic science to future cancer treatment. Cell Struct Funct, 37, 75-80. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Nobuhisa, T., Naomoto, Y., Okawa, T., Takaoka, M., Gunduz, M., Motoki, T., Nagatsuka, H., Tsujigiwa, H., Shirakawa, Y., Yamatsuji, T., Haisa, M., Matsuoka, J., Kurebayashi, J., Nakajima, M., Taniguchi, S., Sagara, J., Dong, J., and Tanaka, N. (2007). Translocation of heparanase into nucleus results in cell differentiation. Cancer Sci, 98, 535-540. [CrossRef] [PubMed] [Google Scholar]
  • Okkelman, I.A., Sukaeva, A.Z., Kirukhina, E.V., Korneenko, T.V., and Pestov, N.B. (2014). Nuclear translocation of lysyl oxidase is promoted by interaction with transcription repressor p66β. Cell Tissue Res, 358, 481-489. [CrossRef] [PubMed] [Google Scholar]
  • Pruessmeyer, J., Martin, C., Hess, F.M., Schwarz, N., Schmidt, S., Kogel, T., Hoettecke, N., Schmidt, B., Sechi, A., Uhlig S, and Ludwig, A. (2010). A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induces shedding of syndecan-1 and -4 by lung epithelial cells. J Biol Chem, 285, 555-564. [CrossRef] [PubMed] [Google Scholar]
  • Purushothaman, A., Hurst, D.R., Pisano, C., Mizumoto, S., Sugahara, K., and Sanderson, R.D. (2011). Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyl-transferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem, 286, 30377-30383. [CrossRef] [PubMed] [Google Scholar]
  • Ricard-Blum, S., Salza, R. (2014). Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol, 23, 457-463. [CrossRef] [PubMed] [Google Scholar]
  • Ricard-Blum, S., and Vallet, S.D. (2016a). Proteases decode the extracellular matrix cryptome, Biochimie, 122, 300-313. [CrossRef] [PubMed] [Google Scholar]
  • Ricard-Blum, S., and Vallet, S.D. (2016b). Matricryptins network with matricellular receptors at the surface of endothelial and tumor cells. Front Pharmacol, 7, 11. [CrossRef] [PubMed] [Google Scholar]
  • Richardson, T.P., Trinkaus-Randall, V., and Nugent, M.A. (2001). Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci, 114, 1613-1623. [PubMed] [Google Scholar]
  • Roper, J.A., Williamson, R.C., and Bass, M.D. (2012). Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol, 22, 583-590. [CrossRef] [PubMed] [Google Scholar]
  • Sarrazin, S., Lamanna, W.C., and Esko, J.D. (2011). Heparan Sulfate Proteoglycans. Cold Spring Harb Perspect Biol, 3, a004952. [CrossRef] [PubMed] [Google Scholar]
  • Schrage, Y.M., Hameetman, L., Szuhai, K., Cleton-Jansen, A.M., Taminiau, A.H., Hogendoorn, P.C., and Bovée, J.V. (2009). Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma. Am J Pathol, 174, 979-988. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schubert, S.Y., Ilan, N., Shushy, M., Ben-Izhak, O., Vlodavsky, I., Goldshmidt, O. (2004). Human heparanase nuclear localization and enzymatic activity, Lab Invest, 84, 535-544. [CrossRef] [PubMed] [Google Scholar]
  • Shimizu-Hirota R., Xiong W., Baxter B.T., Kunkel S.L., Maillard I., Chen X.W., Sabeh F., Liu R., Li, X.Y., and Weiss, S.J. (2012). MT1-MMP regulates the PI3Kδ.Mi-2/NuRD-dependent control of macrophage immune function. Genes Dev, 26, 395-413. [CrossRef] [PubMed] [Google Scholar]
  • Si-Tayeb, K., Monvoisin, A., Mazzocco, C., Lepreux, S., Decossas, M., Cubel, G., Taras, D., Blanc J.F., Robinson D.R., and Rosenbaum, J. (2006). Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am J Pathol, 169, 1390–1401. [CrossRef] [PubMed] [Google Scholar]
  • Song, N., Ding, Y., Zhuo, W., He, T., Fu., Z., Chen, Y., Song, X., Fu, Y., and Luo, Y. (2012). The nuclear translocation of endostatin is mediated by its receptor nucleolin in endothelial cells. Angiogenesis, 15, 697-711. [CrossRef] [PubMed] [Google Scholar]
  • Spencer, V.A., Xu, R., and Bissell, M.J. (2010). Gene expression in the third dimension: the ECM-nucleus connection. J Mammary Gland Biol Neoplasia, 15, 65-71. [CrossRef] [PubMed] [Google Scholar]
  • Stanford, K.I., Bishop, J.R., Foley, E.M., Gonzales, J.C., Niesman, I.R., Witztum, J.L., and Esko, J.D. (2009). Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest, 119, 3236-3245. [PubMed] [Google Scholar]
  • Stewart, M.D., Sanderson, R.D. (2014). Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol, 35, 56-59. [CrossRef] [PubMed] [Google Scholar]
  • Stewart, M.D., Ramani, V.C., and Sanderson, R.D. (2015). Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J Biol Chem, 290, 941-949. [CrossRef] [PubMed] [Google Scholar]
  • Tumova, S., Hatch, B.A., Law, D.J., and Bame, K.J. (1999). Basic fibroblast growth factor does not prevent heparan sulphate proteoglycan catabolism in intact cells, but it alters the distribution of the glycosaminoglycan degradation products. Biochem J, 337, 471-481. [CrossRef] [PubMed] [Google Scholar]
  • Wu, L., Viola, C.M., Brzozowski, A.M., and Davies, G.J. (2015). Strutural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol, 22, 1016-1022. [CrossRef] [PubMed] [Google Scholar]
  • Yang, Y., Gorzelanny, C., Bauer, A.T., Halter, N., Komljenovic, D., Bäuerle, T., Borsig, L., Roblek, M., and Schneider, S.W. (2015). Nuclear heparanase-1 activity suppresses melanoma progression via its DNA-binding affinity. Oncogene, 34, 5832-5842. [CrossRef] [PubMed] [Google Scholar]
  • Zong, F., Fthenou, E., Wolmer, N., Hollósi, P., Kovalszky, I., Szilák, L., Mogler, C., Nilsonne, G., Tzanakakis, G., and Dobra, K. (2009). Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS One, 4, e7346. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.