Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 210, Numéro 1, 2016
Page(s) 27 - 36
Section Cellules pluripotentes induites : de la modélisation des maladies à la thérapie cellulaire (Journée Claude Bernard 2015)
DOI https://doi.org/10.1051/jbio/2016004
Publié en ligne 10 juin 2016
  • Amoroso, M.W., Croft, G.F., Williams, D.J., O’Keeffe, S., Carrasco, M.A., Davis, A.R., Roybon, L., Oakley, D.H., Maniatis, T., Henderson, C.E., and Wichterle, H. (2013). Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J Neurosci, 33, 574-586. [CrossRef] [PubMed] [Google Scholar]
  • Bensimon, G., Lacomblez, L., and Meininger, V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med, 330, 585-591. [CrossRef] [PubMed] [Google Scholar]
  • Bilican, B., Serio, A., Barmada, S.J., Nishimura, A.L., Sullivan, G.J., Carrasco, M., Phatnani, H.P., Puddifoot, C.A., Story, D., Fletcher, J., Park, I.H., Friedman, B.A., Daley, G.Q., Wyllie, D.J., Hardingham, G.E., Wilmut, I., Finkbeiner, S., Maniatis, T., Shaw, C.E., and Chandran, S. (2012). Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA, 109, 5803-5808. [CrossRef] [Google Scholar]
  • Boillée, S., Van de Velde, C., Cleveland, D.W. (2006). ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 52, 39-59. [CrossRef] [PubMed] [Google Scholar]
  • Boza-Moran, M.G., Martinez-Hernandez, R., Bernal, S., Wanisch, K., Also-Rallo, E., Le Heron, A., Alias, L., Denis, C., Girard, M., Yee, J.K., Tizzano, E.F., Yáñez-Muñoz, R.J. (2015). Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons. Sci Rep, 5, 11696. [CrossRef] [PubMed] [Google Scholar]
  • Burkhardt, M.F., Martinez, F.J., Wright, S., Ramos, C., Volfson, D., Mason, M., Garnes, J., Dang, V., Lievers, J., Shoukat-Mumtaz, U., Martinez, R., Gai, H., Blake, R., Vaisberg, E., Grskovic, M., Johnson, C., Irion, S., Bright, J., Cooper, B., Nguyen, L., Griswold-Prenner, I., and Javaherian, A. (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci, 56, 355-364. [CrossRef] [PubMed] [Google Scholar]
  • Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 27, 275-280. [CrossRef] [PubMed] [Google Scholar]
  • Chen, H., Qian, K., Du, Z., Cao, J., Petersen, A., Liu, H., Blackbourn, L.W.4th., Huang, C.L., Errigo, A., Yin, Y., Lu, J., Ayala, M., and Zhang, S.C. (2014). Modeling ALS with iPSCs Reveals that Mutant SOD1 Misregulates Neurofilament Balance in Motor Neurons. Cell Stem Cell, 14, 796-809. [CrossRef] [Google Scholar]
  • Chestkov, I.V., Vasilieva, E.A., Illarioshkin, S.N., Lagarkova, M.A., and Kiselev, S.L. (2014). Patient-Specific Induced Pluripotent Stem Cells for SOD1-Associated Amyotrophic Lateral Sclerosis Pathogenesis Studies. Acta Naturae, 6, 54-60. [Google Scholar]
  • Corti, S., Nizzardo, M., Simone, C., Falcone, M., Nardini, M., Ronchi, D., Donadoni, C., Salani, S., Riboldi, G., Magri, F., Menozzi G., Bonaglia C., Rizzo F., Bresolin N., and Comi G.P. (2012). Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med, 4, 165ra162. [Google Scholar]
  • Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., Menozzi, G., Bonaglia, C., Rizzo, F., Bresolin, N., and Comi, G.P. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218-1221. [CrossRef] [PubMed] [Google Scholar]
  • Donnelly, C.J., Zhang, P.W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S., Daley, E.L., Poth, E.M., Hoover, B., Fines, D.M., Maragakis, N., Tienari, P.J., Petrucelli, L., Traynor, B.J., Wang, J., Rigo, F., Bennett, C.F., Blackshaw, S., Sattler, R., and Rothstein, J.D. (2013). RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron, 80, 415-428. [CrossRef] [PubMed] [Google Scholar]
  • Douvaras, P., and Fossati, V. (2015). Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc, 10, 1143-1154. [CrossRef] [PubMed] [Google Scholar]
  • Ebert, A.D., Yu, J., Rose, F.F., Jr., Mattis, V.B., Lorson, C.L., Thomson, J.A., and Svendsen, C.N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277-280. [CrossRef] [PubMed] [Google Scholar]
  • Egawa, N., Kitaoka, S., Tsukita, K., Naitoh, M., Takahashi, K., Yamamoto, T., Adachi, F., Kondo, T., Okita, K., Asaka, I., Aoi, T., Watanabe, A., Yamada, Y., Morizane, A., Takahashi, J., Ayaki, T., Ito, H., Yoshikawa, K., Yamawaki, S., Suzuki, S., Watanabe, D., Hioki, H., Kaneko, T., Makioka, K., Okamoto, K., Takuma, H., Tamaoka, A., Hasegawa, K., Nonaka, T., Hasegawa, M., Kawata, A., Yoshida, M., Nakahata, T., Takahashi, R., Marchetto, M.C., Gage, F.H., Yamanaka, S., and Inoue, H. (2012). Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Sci Transl Med, 4, 145ra104. [CrossRef] [Google Scholar]
  • Farrar, M.A., and Kiernan, M.C. (2015). The Genetics of Spinal Muscular Atrophy: Progress and Challenges. Neurotherapeutics, 12, 290-302. [CrossRef] [Google Scholar]
  • Haeusler, A.R., Donnelly, C.J., Periz, G., Simko, E.A., Shaw, P.G., Kim, M.S., Maragakis, N.J., Troncoso, J.C., Pandey, A., Sattler, R., Rothstein, J.D., and Wang, J. (2014). C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 507, 195-200. [CrossRef] [PubMed] [Google Scholar]
  • Han, S.S., Williams, L.A., and Eggan, K.C. (2011). Constructing and deconstructing stem cell models of neurological disease. Neuron, 70, 626-644. [CrossRef] [PubMed] [Google Scholar]
  • Hu, B.Y., Zhang, S.C. (2009). Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc, 4, 1295-1304. [CrossRef] [PubMed] [Google Scholar]
  • Japtok, J., Lojewski, X., Naumann, M., Klingenstein, M., Reinhardt, P., Sterneckert, J., Putz, S., Demestre, M., Boeckers, T.M., Ludolph, A.C., Liebau, S., Storch, A., and Hermann, A. (2015). Stepwise acquirement of hallmark neuropathology in FUS-ALS iPSC models depends on mutation type and neuronal aging. Neurobiol Dis, 82, 420-429. [CrossRef] [PubMed] [Google Scholar]
  • Kim, D.S., Lee, J.S., Leem, J.W., Huh, Y.J., Kim, J.Y., Kim, H.S., Park, I.H., Daley, G.Q., Hwang, D.Y., and Kim, D.W. (2010). Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev, 6, 270-281. [CrossRef] [PubMed] [Google Scholar]
  • Kiskinis, E., Sandoe, J., Williams, L.A., Boulting, G.L., Moccia, R., Wainger, B.J., Han, S., Peng, T., Thams, S., Mikkilineni, S., Mellin, C., Merkle, F.T., Davis-Dusenbery, B.N., Ziller, M., Oakley, D., Ichida, J., Di Costanzo, S., Atwater, N., Maeder, M.L., Goodwin, M.J., Nemesh, J., Handsaker, R.E., Paull, D., Noggle, S., McCarroll, S.A., Joung, J.K., Woolf, C.J., Brown, R.H., and Eggan, K. (2014). Pathways Disrupted in Human ALS Motor Neurons Identified through Genetic Correction of Mutant SOD1. Cell Stem Cell, 14, 781-795. [CrossRef] [Google Scholar]
  • Lenzi, J., De Santis, R., de Turris, V., Morlando, M., Laneve, P., Calvo, A., Caliendo, V., Chio, A., Rosa, A., and Bozzoni, I. (2015). ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech, 8, 755-766. [CrossRef] [PubMed] [Google Scholar]
  • Liu, H., Lu, J., Chen, H., Du, Z., Li, X.J., and Zhang, S.C. (2015). Spinal muscular atrophy patient-derived motor neurons exhibit hyperexcitability. Sci Rep, 5, 12189. [CrossRef] [PubMed] [Google Scholar]
  • Liu, X., Chen, J., Liu, W., Li, X., Chen, Q., Liu, T., Gao, S., and Deng, M. (2015). The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics, 16, 223-231. [CrossRef] [PubMed] [Google Scholar]
  • Maury, Y., Come, J., Piskorowski, R.A., Salah-Mohellibi, N., Chevaleyre, V., Peschanski, M., Martinat, C., and Nedelec, S. (2015). Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol, 33, 89-96. [CrossRef] [PubMed] [Google Scholar]
  • McGivern, J.V., Patitucci, T.N., Nord, J.A., Barabas, M.E., Stucky, C.L., and Ebert, A.D. (2013). Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia, 61, 1418-1428. [CrossRef] [PubMed] [Google Scholar]
  • Miller, T.M., Pestronk, A., David, W., Rothstein, J., Simpson, E., Appel, S.H., Andres, P.L., Mahoney, K., Allred, P., Alexander, K., Ostrow, L.W., Schoenfeld, D., Macklin, E.A., Norris, D.A., Manousakis, G., Crisp, M., Smith, R., Bennett, C.F., Bishop, K.M., and Cudkowicz, M.E. (2013). An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol, 12, 435-442. [CrossRef] [PubMed] [Google Scholar]
  • Naryshkin, N.A., Weetall, M., Dakka, A., Narasimhan, J., Zhao, X., Feng, Z., Ling, K.K., Karp, G.M., Qi, H., Woll, M.G., Chen, G., Zhang, N., Gabbeta, V., Vazirani, P., Bhattacharyya, A., Furia, B., Risher, N., Sheedy, J., Kong, R., Ma, J., Turpoff, A., Lee, C.S., Zhang, X., Moon, Y.C., Trifillis, P., Welch, E.M., Colacino, J.M., Babiak, J., Almstead, N.G., Peltz, S.W., Eng, L.A., Chen, K.S., Mull, J.L., Lynes, M.S., Rubin, L.L., Fontoura, P., Santarelli, L., Haehnke, D., McCarthy, K.D., Schmucki, R., Ebeling, M., Sivaramakrishnan, M., Ko, C.P., Paushkin, S.V., Ratni, H., Gerlach, I., Ghosh, A., and Metzger, F. (2014). Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science, 345, 688-693. [CrossRef] [PubMed] [Google Scholar]
  • Ng, S.Y., Soh, B.S., Rodriguez-Muela, N., Hendrickson, D.G., Price, F., Rinn, J.L., and Rubin, L.L. (2015). Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy. Cell Stem Cell, 17, 569-584. [CrossRef] [Google Scholar]
  • Nishimura, A.L., Shum, C., Scotter, E.L., Abdelgany, A., Sardone, V., Wright, J., Lee, Y.B., Chen, H.J., Bilican, B., Carrasco, M., Maniatis, T., Chandran, S., Rogelj, B., Gallo, J.M., and Shaw, C.E. (2014). Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS One, 9, e91269. [CrossRef] [PubMed] [Google Scholar]
  • Ogawa, S., Tokumoto, Y., Miyake, J., and Nagamune, T. (2011). Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells. In Vitro Cell Dev Biol Anim, 47, 464-469. [CrossRef] [PubMed] [Google Scholar]
  • Qu, Q., Li, D., Louis, K.R., Li, X., Yang, H., Sun, Q., Crandall, S.R., Tsang, S., Zhou, J., Cox, C.L., Cheng, J., and Wang, F. (2014). High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun, 5, 3449. [PubMed] [Google Scholar]
  • Sareen, D., Ebert, A.D., Heins, B.M., McGivern, J.V., Ornelas, L., and Svendsen, C.N. (2012). Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS One, 7, e39113. [CrossRef] [PubMed] [Google Scholar]
  • Sareen, D., O’Rourke, J.G., Meera, P., Muhammad, A.K., Grant, S., Simpkinson, M., Bell, S., Carmona, S., Ornelas, L., Sahabian, A., Gendron, T., Petrucelli, L., Baughn, M., Ravits, J., Harms, M.B., Rigo, F., Bennett, C.F., Otis, T.S., Svendsen, C.N., and Baloh, R.H. (2013). Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med, 5, 208ra149. [CrossRef] [Google Scholar]
  • Serio, A., Bilican, B., Barmada, S.J., Ando, D.M., Zhao, C., Siller, R., Burr, K., Haghi, G., Story, D., Nishimura, A.L., Carrasco, M.A., Phatnani, H.P., Shum, C., Wilmut, I., Maniatis, T., Shaw, C.E., Finkbeiner, S., and Chandran, S. (2013). Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci USA, 110, 4697-4702. [CrossRef] [Google Scholar]
  • Su, X.W., Broach, J.R., Connor, J.R., Gerhard, G.S., and Simmons, Z. (2014). Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve, 49, 786-803. [CrossRef] [PubMed] [Google Scholar]
  • Toli, D., Buttigieg, D., Blanchard, S., Lemonnier, T., Lamotte d’Incamps, B., Bellouze, S., Baillat, G., Bohl, D., and Haase, G. (2015). Modeling amyotrophic lateral sclerosis in pure human iPSc-derived motor neurons isolated by a novel FACS double selection technique. Neurobiol Dis, 82, 269-280. [CrossRef] [PubMed] [Google Scholar]
  • Vatovec, S., Kovanda, A., and Rogelj, B. (2014). Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging, 35, 2421, 2421.e1-2421e12. [CrossRef] [Google Scholar]
  • Wirth, B., Barkats, M., Martinat, C., Sendtner, M., and Gillingwater, T.H. (2015). Moving towards treatments for spinal muscular atrophy: hopes and limits. Expert Opin Emerg Drugs, 20, 353-356. [Google Scholar]
  • Yang, Y.M., Gupta, S.K., Kim, K.J., Powers, B.E., Cerqueira, A., Wainger, B.J., Ngo, H.D., Rosowski, K.A., Schein, P.A., Ackeifi, C.A., Arvanites, A.C., Davidow, L.S., Woolf, C.J., and Rubin, L.L. (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12, 713-726. [CrossRef] [Google Scholar]
  • Yoshida, M., Kitaoka, S., Egawa, N., Yamane, M., Ikeda, R., Tsukita, K., Amano, N., Watanabe, A., Morimoto, M., Takahashi, J., Hosoi, H., Nakahata, T., Inoue, H., and Saito, M.K. (2015). Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs. Stem Cell Rep, 4, 561-568. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.