Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 210, Numéro 1, 2016
Page(s) 1 - 8
Section Cellules pluripotentes induites : de la modélisation des maladies à la thérapie cellulaire (Journée Claude Bernard 2015)
DOI https://doi.org/10.1051/jbio/2016013
Publié en ligne 10 juin 2016
  • Armulik, A., Genové, G., and Betsholtz, C. (2011). Pericytes : developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell, 21, 193-215. [CrossRef] [PubMed] [Google Scholar]
  • Bai, Q., Desprat, R., Klein, B., Lemaitre, J.-M., and De Vos, J. (2013). Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective. Curr Gene Ther, 13, 93-98. [CrossRef] [PubMed] [Google Scholar]
  • Carey, B.W., Markoulaki, S., Hanna, J.H., Faddah, D.A., Buganim, Y., Kim, J., Ganz, K., Steine, E.J., Cassady, J.P., Creyghton, M.P., Welstead G.G., Gao Q., and Jaenisch R. (2011). Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell, 9, 588-598. [CrossRef] [PubMed] [Google Scholar]
  • Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 27, 275-280. [CrossRef] [PubMed] [Google Scholar]
  • Chang, C.-W., Lai, Y.-S., Westin, E., Khodadadi-Jamayran, A., Pawlik, K.M., Lamb, L.S., Goldman, F.D., and Townes, T.M. (2015). Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep, 12, 1668-1677. [CrossRef] [PubMed] [Google Scholar]
  • Choi, J., Lee, S., Mallard, W., Clement, K., Tagliazucchi, G.M., Lim, H., Choi, I.Y., Ferrari, F., Tsankov, A.M., Pop, R., Lee G., Rinn J.L., Meissner A., Park P.J, and Hochedlinger K. (2015). A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol, 33, 1173-1181. [CrossRef] [PubMed] [Google Scholar]
  • Cibelli, J.B. (2007). Development. Is therapeutic cloning dead? Science, 318, 1879-1880. [CrossRef] [PubMed] [Google Scholar]
  • Collins, S.F. (2014). Bioprinting is changing regenerative medicine forever. Stem Cells Dev, 23, 79-82. [CrossRef] [PubMed] [Google Scholar]
  • Evans, M.J., Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154-156. [CrossRef] [PubMed] [Google Scholar]
  • Fox, I.J., Daley, G.Q., Goldman, S.A., Huard, J., Kamp, T.J., and Trucco, M. (2014). Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science, 345, 1247391-1247391. [CrossRef] [PubMed] [Google Scholar]
  • Funakoshi, N., Duret, C., Pascussi, J.-M., Blanc, P., Maurel, P., Daujat-Chavanieu, M., and Gerbal-Chaloin, S. (2011). Comparison of hepatic-like cell production from human embryonic stem cells and adult liver progenitor cells: CAR transduction activates a battery of detoxification genes. Stem Cell Rev Rep, 7, 518-531. [CrossRef] [Google Scholar]
  • Giquel, C., De Vos, J., Bourret, R. (2015). Creation of chimeric animals bearing human organs. Médecine et Droit. Elsevier Masson France, pp. 1-11. [Google Scholar]
  • Gotoh, S., Ito, I., Nagasaki, T., Yamamoto, Y., Konishi, S., Korogi, Y., Matsumoto, H., Muro, S., Hirai, T., Funato, M., Mae S., Toyoda T., Sato-Otsubo A., Ogawa S., Osafune K., Mishima M. (2014). Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells. Stem Cell Reports, 3, 394-403. [CrossRef] [PubMed] [Google Scholar]
  • Huang, L., Holtzinger, A., Jagan, I., BeGora, M., Lohse, I., Ngai, N., Nostro, C., Wang, R., Muthuswamy, L.B., Crawford, H.C., Arrowsmith C., Kalloger S.E., Renouf D.J., Connor A.A., Cleary S., Schaeffer D.F., Roehrl M., Tsao M.S., Gallinger S., Keller G., Muthuswamy S.K. (2015). Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med, 21, 1364-1371. [CrossRef] [PubMed] [Google Scholar]
  • Kim, J.-H., Auerbach, J.M., Rodríguez-Gómez, J.A., Velasco, I., Gavin, D., Lumelsky, N., Lee, S.-H., Nguyen, J., Sánchez-Pernaute, R., Bankiewicz, K., and McKay, R. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature, 418, 50-56. [CrossRef] [PubMed] [Google Scholar]
  • Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I.R., Yabuuchi A., Takeuchi, A., Cunniff, K.C., Hongguang H., McKinney-Freeman, S., Naveiras, O., Yoon, T.J., Irizarry, R.A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S.H., Weissman, I.L., Feinberg, A.P., and Daley, G.Q. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285-290. [CrossRef] [PubMed] [Google Scholar]
  • Kobari, L., Yates, F., Oudrhiri, N., Francina, A., Kiger, L., Mazurier, C., Rouzbeh, S., Nemer, El, W., Hebert, N., Giarratana, M.-C.C., François S., Chapel A., Lapillonne H., Luton D., Bennaceur-Griscelli A., Douay L. (2012). Human induced pluripotent stem cells can reach complete terminal maturation : in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica, 97, 1795-1803. [CrossRef] [PubMed] [Google Scholar]
  • Kobayashi, T., Yamaguchi, T., Hamanaka, S., Kato-Itoh, M., Yamazaki, Y., Ibata, M., Sato, H., Lee, Y.-S., Usui, J.-I., Knisely A.S., Hirabayashi, M., Nakauchi H. (2010). Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell, 142, 787-799. [CrossRef] [PubMed] [Google Scholar]
  • Kolaja, K. (2014). Stem cells and stem cell-derived tissues and their use in safety assessment. J Biol Chem, 289, 4555-4561. [CrossRef] [PubMed] [Google Scholar]
  • Lancaster, M.A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373-379. [CrossRef] [PubMed] [Google Scholar]
  • Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Aït-Hamou, N., Leschik, J., Pellestor, F., Ramirez, J.M., De Vos, J., Lehmann, S., and Lemaitre, J.M. (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev, 25, 2248-2253. [CrossRef] [PubMed] [Google Scholar]
  • Martin, G.R., Evans, M.J. (1975). Differentiation of clonal lines of teratocarcinoma cells : formation of embryoid bodies in vitro. Proc Natl Acad Sci USA, 72, 1441-1445. [CrossRef] [Google Scholar]
  • McCracken, K.W., Catá, E.M., Crawford, C.M., Sinagoga, K.L., Schumacher, M., Rockich, B.E., Tsai, Y.-H., Mayhew, C.N., Spence, J.R., Zavros, Y., Wells J.M. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516, 400-404. [CrossRef] [PubMed] [Google Scholar]
  • Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M., and Sasai, Y. (2012). Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs. Cell Stem Cell, 10, 771-785. [CrossRef] [Google Scholar]
  • Osafune, K., Caron, L., Borowiak, M., Martinez, R.J., Fitz-Gerald, C.S., Sato, Y., Cowan, C.A., Chien, K.R., and Melton, D.A. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol, 26, 313-315. [CrossRef] [PubMed] [Google Scholar]
  • Pera, M.F. (2011). Stem cells : The dark side of induced pluripotency. Nature, 471, 46-47. [CrossRef] [PubMed] [Google Scholar]
  • Prokhorova, T.A., Harkness, L.M., Frandsen, U., Ditzel, N., Schrøder, H.D., Burns, J.S., and Kassem, M. (2009). Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev, 18, 47-54. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ramirez, J.M., Bai, Q., Dijon-Grinand, M., Assou, S., Gerbal-Chaloin, S., Hamamah, S., De Vos, J. (2010). Human pluripotent stem cells : From biology to cell therapy. World J Stem Cells, 2, 24-33. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez, J.M., Bai, Q., Pequignot, M., Becker, F., Kassambara, A., Bouin, A., Kalatzis, V., Dijon-Grinand, M., De Vos, J. (2013). Side scatter intensity is highly heterogeneous in undifferentiated pluripotent stem cells and predicts clonogenic self-renewal. Stem Cells Dev, 22, 1851-1860. [CrossRef] [PubMed] [Google Scholar]
  • Rashid, T., Kobayashi, T., and Nakauchi, H. (2014). Revisiting the Flight of Icarus : Making Human Organs from PSCs with Large Animal Chimeras. Cell Stem Cell, 15, 406-409. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Rouhani, F., Kumasaka, N., de Brito, M.C., Bradley, A., Vallier, L., and Gaffney, D. (2014). Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet, 10, e1004432. [CrossRef] [PubMed] [Google Scholar]
  • Roy, N.S., Cleren, C., Singh, S.K., Yang, L., Beal, M.F., and Goldman, S.A. (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med, 12, 1259-1268. [CrossRef] [PubMed] [Google Scholar]
  • Science, A.A.F.T.A.O. (2012). Nobel Prize in physiology or medicine. Reprogrammed cells earn biologists top honor. Science, 338, 178-179. [CrossRef] [PubMed] [Google Scholar]
  • Tachibana, M., Amato, P., Sparman, M., Gutierrez, N.M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H.-S., Sritanaudomchai, H., Masterson K., Larson J., Eaton D., Sadler-Fredd K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R.L., Wolf D., Mitalipov S. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153, 1228-1238. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi, K., Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-676. [CrossRef] [PubMed] [Google Scholar]
  • Takasato, M., Er, P.X., Chiu, H.S., Maier, B., Baillie, G.J., Ferguson, C., Parton, R.G., Wolvetang, E.J., Roost, M.S., Chuva de Sousa Lopes, S.M., Little M.H. (2015). Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 526, 564-568. [CrossRef] [PubMed] [Google Scholar]
  • Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., Zhang, R.-R., Ueno, Y., Zheng, Y.-W., Koike, N., Aoyama S., Adachi Y., Taniguchi H. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 499, 481-484. [CrossRef] [PubMed] [Google Scholar]
  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145-1147. [CrossRef] [PubMed] [Google Scholar]
  • Vallier, L. (2015). Putting induced pluripotent stem cells to the test. Nat Biotechnol, 33, 1145-1146. [CrossRef] [PubMed] [Google Scholar]
  • Vogel, G. (2007). Nobel Prizes. A knockout award in medicine. Science, 318, 178-179. [CrossRef] [PubMed] [Google Scholar]
  • Wakayama, T. (2004). On the road to therapeutic cloning. Nat Biotechnol, 22, 399-400. [CrossRef] [PubMed] [Google Scholar]
  • Watson, C.L., Mahe, M.M., Múnera, J., Howell, J.C., Sundaram, N., Poling, H.M., Schweitzer, J.I., Vallance, J.E., Mayhew, C.N., Sun, Y., Grabowski, G., Finkbeiner S.R., Spence J.R., Shroyer N.F., Wells J.M., Helmrath M.A. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nat Med, 20, 1310-1314. [CrossRef] [PubMed] [Google Scholar]
  • Williams, L.A., Davis-Dusenbery, B.N., and Eggan, K.C. (2012). SnapShot : Directed Differentiation of Pluripotent Stem Cells. Cell, 149, 1174-1174.e1. [CrossRef] [PubMed] [Google Scholar]
  • Yamanaka, S. (2009). Ekiden to iPS Cells. Nat Med, 15, 1145-1148. [CrossRef] [PubMed] [Google Scholar]
  • Yamanaka, S. (2012). Induced pluripotent stem cells : past, present, and future. Cell Stem Cell, 10, 678-684. [CrossRef] [Google Scholar]
  • Yang, L., Guell, M., Niu, D., George, H., Lesha, E., Grishin, D., Aach, J., Shrock, E., Xu, W., Poci, J., Cortazio R, Wilkinson RA, Fishman JA, Church G. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 350, 1101-1104. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.