Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 210, Numéro 1, 2016
Page(s) 9 - 17
Section Cellules pluripotentes induites : de la modélisation des maladies à la thérapie cellulaire (Journée Claude Bernard 2015)
DOI https://doi.org/10.1051/jbio/2016008
Publié en ligne 10 juin 2016
  • Amabile, G., Welner, R.S., Nombela-Arrieta, C., D’Alise, A.M., Di Ruscio, A., Ebralidze, A.K., Kraytsberg, Y., Ye, M., Kocher, O., Neuberg, D.S., Khrapko, K., Silberstein, L.E., and Tenen, D.G. (2013). In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood, 121, 1255-1264. [CrossRef] [PubMed] [Google Scholar]
  • Baek, E.J., Kim, H.-S., Kim, S., Jin, H., Choi, T.-Y., and Kim, H.O. (2008). In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion (Paris), 48, 2235-2245. [CrossRef] [PubMed] [Google Scholar]
  • Banito, A., Rashid, S.T., Acosta, J.C., Li, S., Pereira, C.F., Geti, I., Pinho, S., Silva, J.C., Azuara, V., Walsh, M., Vallier, L., and Gil, J. (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev, 23, 2134-2139. [CrossRef] [PubMed] [Google Scholar]
  • Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M., and Peault, B. (1992). Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA, 89, 2804-2808. [CrossRef] [Google Scholar]
  • Choi, K.-D., Vodyanik, M.A., Slukvin, I.I. (2009a). Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J Clin Invest, 119, 2818-2829. [CrossRef] [PubMed] [Google Scholar]
  • Choi, K.-D., Yu, J., Smuga-Otto, K., Salvagiotto, G., Rehrauer, W., Vodyanik, M., Thomson, J., Slukvin, I. (2009b). Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells Dayt, 27, 559-567. [CrossRef] [PubMed] [Google Scholar]
  • Choi, K.-D., Vodyanik, M.A., Togarrati, P.P., Suknuntha, K., Kumar, A., Samarjeet, F., Probasco, M.D., Tian, S., Stewart, R., Thomson, J.A., and Slukvin, I.I. (2012). Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep, 2, 553-567. [CrossRef] [PubMed] [Google Scholar]
  • DeVilbiss, A.W., Sanalkumar, R., Hall, B.D.R., Katsumura, K.R., de Andrade, I.F., and Bresnick, E.H. (2015). Epigenetic Determinants of Erythropoiesis : Role of the Histone Methyltransferase SetD8 in Promoting Erythroid Cell Maturation and Survival. Mol Cell Biol, 35, 2073-2087. [CrossRef] [PubMed] [Google Scholar]
  • Di Stefano, B., Sardina, J.L., van Oevelen, C., Collombet, S., Kallin, E.M., Vicent, G.P., Lu, J., Thieffry, D., Beato, M., and Graf, T. (2014). C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature, 506, 235-239. [CrossRef] [PubMed] [Google Scholar]
  • Ebrahimi, B. (2015). Reprogramming barriers and enhancers : strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen, 4, 10. [CrossRef] [Google Scholar]
  • Eilken, H.M., Nishikawa, S.-I., and Schroeder, T. (2009). Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature, 457, 896-900. [CrossRef] [PubMed] [Google Scholar]
  • Fujimi, A., Matsunaga, T., Kobune, M., Kawano, Y., Nagaya, T., Tanaka, I., Iyama, S., Hayashi, T., Sato, T., Miyanishi, K., Sagawa, T., Sato, Y, Takimoto, R., Takayama, T., Kato, J., Gasa, S., Sakai, H., Tsuchida, E., Ikebuchi, K., Hamada, H., and Niitsu, Y. (2008). Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages. Int J Hematol, 87, 339-350. [CrossRef] [PubMed] [Google Scholar]
  • Giarratana, M.-C., Kobari, L., Lapillonne, H., Chalmers, D., Kiger, L., Cynober, T., Marden, M.C., Wajcman, H., and Douay, L. (2005). Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol, 23, 69-74. [CrossRef] [PubMed] [Google Scholar]
  • Giarratana, M.-C., Rouard, H., Dumont, A., Kiger, L., Safeukui, I., Le Pennec, P.-Y., François, S., Trugnan, G., Peyrard, T., Marie, T., Jolly, S., Hebert, N., Mazurier, C., Mario, N., Harmand, L., Lapillonne, H., Devaux, J.Y., and Douay, L. (2011). Proof of principle for transfusion of in vitro-generated red blood cells. Blood, 118, 5071-5079. [CrossRef] [PubMed] [Google Scholar]
  • Gori, J.L., Butler, J.M., Chan, Y.-Y., Chandrasekaran, D., Poulos, M.G., Ginsberg, M., Nolan, D.J., Elemento, O., Wood, B.L., Adair, J.E., Rafii, S., and Kiem, H.P. (2015). Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J Clin Invest, 125, 1243-1254. [CrossRef] [PubMed] [Google Scholar]
  • Guo, S., Zi, X., Schulz, V.P., Cheng, J., Zhong, M., Koochaki, S.H.J., Megyola, C.M., Pan, X., Heydari, K., Weissman, S.M., Gallagher, P.G., Krause, D.S., Fan, R., and Lu, J. (2014). Nonstochastic reprogramming from a privileged somatic cell state. Cell, 156, 649-662. [CrossRef] [PubMed] [Google Scholar]
  • Hasegawa, Y., Tang, D., Takahashi, N., Hayashizaki, Y., Forrest, A.R.R., FANTOM Consortium, and Suzuki, H. (2014). CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Sci Rep, 4, 5228. [PubMed] [Google Scholar]
  • Hebiguchi, M., Hirokawa, M., Guo, Y.-M., Saito, K., Wakui, H., Komatsuda, A., Fujishima, N., Takahashi, N., Takahashi, T., Sasaki, T., Nunomura W., Takakuwa Y., Sawada K. (2008). Dynamics of human erythroblast enucleation. Int J Hematol, 88, 498-507. [CrossRef] [PubMed] [Google Scholar]
  • Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., Ge J., Xu J., Zhang Q., Zhao Y., Deng H. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651-654. [CrossRef] [PubMed] [Google Scholar]
  • Ieda, M., Fu, J.-D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375-386. [CrossRef] [PubMed] [Google Scholar]
  • Jaffredo, T., Lempereur, A., Richard, C., Bollerot, K., Gautier, R., Canto, P.-Y., Drevon, C., Souyri, M., and Durand, C. (2013). Dorso-ventral contributions in the formation of the embryonic aorta and the control of aortic hematopoiesis. Blood Cells Mol Dis, 51, 232-238. [CrossRef] [PubMed] [Google Scholar]
  • Keerthivasan, G., Small, S., Liu, H., Wickrema, A., and Crispino, J.D. (2010). Vesicle trafficking plays a novel role in erythroblast enucleation. Blood, 116, 3331-3340. [CrossRef] [PubMed] [Google Scholar]
  • Kennedy, M., Awong, G., Sturgeon, C.M., Ditadi, A., LaMotte-Mohs, R., Zúñiga-Pflücker, J.C., and Keller, G. (2012). T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures. Cell Rep, 2, 1722-1735. [CrossRef] [PubMed] [Google Scholar]
  • Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I.R., Yabuuchi A., Takeuchi A., Cunniff K.C., Hongguang H., McKinney-Freeman S., Naveiras O., Yoon T.J., Irizarry R.A., Jung N., Seita J., Hanna J., Murakami P., Jaenisch R., Weissleder R., Orkin S.H., Weissman I.L., Feinberg A.P., and Daley G.Q. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285-290. [CrossRef] [PubMed] [Google Scholar]
  • Kobari, L., Yates, F., Oudrhiri, N., Francina, A., Kiger, L., Mazurier, C., Rouzbeh, S., El-Nemer, W., Hebert, N., Giarratana, M.-C., François S., Chapel, A., Lapillonne, H., Luton, D., Bennaceur-Griscelli, A., and Douay, L. (2012). Human induced pluripotent stem cells can reach complete terminal maturation : in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica, 97, 1795-1803. [CrossRef] [PubMed] [Google Scholar]
  • Kurita, R., Suda, N., Sudo, K., Miharada, K., Hiroyama, T., Miyoshi, H., Tani, K., and Nakamura, Y. (2013). Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PloS One, 8, e59890. [CrossRef] [PubMed] [Google Scholar]
  • Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Aït-Hamou, N., Leschik, J., Pellestor, F., Ramirez, J.-M., De Vos, J., Lehmann S., and Lemaitre JM. (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev, 25, 2248-2253. [CrossRef] [PubMed] [Google Scholar]
  • Lapillonne, H., Kobari, L., Mazurier, C., Tropel, P., Giarratana, M.-C., Zanella-Cleon, I., Kiger, L., Wattenhofer-Donzé, M., Puccio, H., Hébert, N., Francina, A., Andreu, G., Viville, S., Douay, L. (2010). Red blood cell generation from human induced pluripotent stem cells : perspectives for transfusion medicine. Haematologica, 95, 1651-1659. [CrossRef] [PubMed] [Google Scholar]
  • Lengerke, C., Grauer, M., Niebuhr, N.I., Riedt, T., Kanz, L., Park, I.-H., and Daley, G.Q. (2009). Hematopoietic development from human induced pluripotent stem cells. Ann New York Acad Sci, 1176, 219-227. [CrossRef] [Google Scholar]
  • Li, J., Song, W., Pan, G., and Zhou, J. (2014). Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. J Hematol Oncol, 7, 50. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Z., Lu, S.-J., Lu, Y., Tan, X., Zhang, X., Yang, M., Zhang, F., Li, Y., and Quan, C. (2015). Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4. Stem Cells Int, 2015, 389628. [PubMed] [Google Scholar]
  • Lu, S.-J., Feng, Q., Park, J.S., Vida, L., Lee, B.-S., Strausbauch, M., Wettstein, P.J., Honig, G.R., and Lanza, R. (2008). Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood, 112, 4475-4484. [CrossRef] [PubMed] [Google Scholar]
  • Ma, F., Ebihara, Y., Umeda, K., Sakai, H., Hanada, S., Zhang, H., Zaike, Y., Tsuchida, E., Nakahata, T., Nakauchi, H., and Tsuji, K. (2008). Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci USA, 105, 13087-13092. [CrossRef] [Google Scholar]
  • Malik, J., Getman, M., and Steiner, L.A. (2015). Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol, 35, 2059-2072. [CrossRef] [PubMed] [Google Scholar]
  • Migliaccio, G., Sanchez, M., Masiello, F., Tirelli, V., Varricchio, L., Whitsett, C., Migliaccio, A.R. (2010). Humanized Culture Medium for Clinical Expansion of Human Erythroblasts. Cell Transplant, 19, 453-469. [CrossRef] [PubMed] [Google Scholar]
  • Miharada, K., Hiroyama, T., Sudo, K., Nagasawa, T., and Nakamura, Y. (2006). Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol, 24, 1255-1256. [CrossRef] [PubMed] [Google Scholar]
  • Morrison, S.J., Uchida, N., and Weissman, I.L. (1995). The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol, 11, 35-71. [CrossRef] [PubMed] [Google Scholar]
  • Neildez-Nguyen, T.M.A., Wajcman, H., Marden, M.C., Bensidhoum, M., Moncollin, V., Giarratana, M.-C., Kobari, L., Thierry, D., and Douay, L. (2002). Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol, 20, 467-472. [CrossRef] [PubMed] [Google Scholar]
  • Olivier, E.N., Qiu, C., Velho, M., Hirsch, R.E., and Bouhassira, E.E. (2006). Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol, 34, 1635-1642. [CrossRef] [PubMed] [Google Scholar]
  • Peyrard, T., Bardiaux, L., Krause, C., Kobari, L., Lapillonne, H., Andreu, G., and Douay, L. (2011). Banking of pluripotent adult stem cells as an unlimited source for red blood cell production : potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev, 25, 206-216. [CrossRef] [PubMed] [Google Scholar]
  • Ramos-Mejia, V., Melen, G.J., Sanchez, L., Gutierrez-Aranda, I., Ligero, G., Cortes, J.L., Real, P.J., Bueno, C., and Menendez, P. (2010). Nodal/Activin signaling predicts human pluripotent stem cell lines prone to differentiate toward the hematopoietic lineage. Mol Ther J Am Soc Gene Ther, 18, 2173-2181. [CrossRef] [Google Scholar]
  • Ran, D., Shia, W.-J., Lo, M.-C., Fan, J.-B., Knorr, D.A., Ferrell, P.I., Ye, Z., Yan, M., Cheng, L., Kaufman, D.S., and Zhang, D.E. (2013). RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood, 121, 2882-2890. [CrossRef] [PubMed] [Google Scholar]
  • Rohani, L., Johnson, A.A., Arnold, A., and Stolzing, A. (2014). The aging signature : a hallmark of induced pluripotent stem cells? Aging Cell, 13, 2-7. [CrossRef] [PubMed] [Google Scholar]
  • Rouzbeh, S., Kobari, L., Cambot, M., Mazurier, C., Hebert, N., Faussat, A.-M., Durand, C., Douay, L., and Lapillonne, H. (2015). Molecular signature of erythroblast enucleation in human embryonic stem cells. Stem Cells, 33, 2431-2441. [CrossRef] [PubMed] [Google Scholar]
  • Sandler, V.M., Lis, R., Liu, Y., Kedem, A., James, D., Elemento, O., Butler, J.M., Scandura, J.M., and Rafii, S. (2014). Reprogramming Human Endothelial to Hematopoietic Cells Requires Vascular Induction. Nature, 511, 312-318. [CrossRef] [PubMed] [Google Scholar]
  • Dos Santos, R.L., Tosti, L., Radzisheuskaya, A., Caballero, I.M., Kaji, K., Hendrich, B., and Silva, J.C.R. (2014). MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell, 15, 102-110. [CrossRef] [Google Scholar]
  • Schlaeger, T.M., Daheron, L., Brickler, T.R., Entwisle, S., Chan, K., Cianci, A., DeVine, A., Ettenger, A., Fitzgerald, K., Godfrey, M., Gupta D., McPherson J., Malwadkar P., Gupta M., Bell B., Doi A., Jung N., Li X., Lynes M.S., Brookes E., Cherry A.B., Demirbas D., Tsankov A.M., Zon L.I., Rubin L.L., Feinberg A.P., Meissner A., Cowan C.A., and Daley, G.Q. (2015). A comparison of non-integrating reprogramming methods. Nat Biotechnol, 33, 58-63. [CrossRef] [PubMed] [Google Scholar]
  • Sekiya, S., Suzuki, A. (2011). Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature, 475, 390-393. [CrossRef] [PubMed] [Google Scholar]
  • Siminovitch, L., Till, J.E., and Mcculloch, E.A. (1964). Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J Cell Physiol, 64, 23-31. [CrossRef] [PubMed] [Google Scholar]
  • Skutelsky, E., Danon, D. (1967). An electron microscopic study of nuclear elimination from the late erythroblast. J Cell Biol, 33, 625-635. [CrossRef] [PubMed] [Google Scholar]
  • Skutelsky, E., Danon, D. (1970). Comparative study of nuclear expulsion from the late erythroblast and cytokinesis. Exp Cell Res, 60, 427-436. [CrossRef] [PubMed] [Google Scholar]
  • Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Woolf, C.J., Eggan, K. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell, 9, 205-218. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science, 241, 58-62. [CrossRef] [PubMed] [Google Scholar]
  • Sturgeon, C.M., Ditadi, A., Awong, G., Kennedy, M., and Keller, G. (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol, 32, 554-561. [CrossRef] [PubMed] [Google Scholar]
  • Suzuki, N., Yamazaki, S., Yamaguchi, T., Okabe, M., Masaki, H., Takaki, S., Otsu, M., and Nakauchi, H. (2013). Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther J Am Soc Gene Ther, 21, 1424-1431. [CrossRef] [Google Scholar]
  • Szabo, E., Rampalli, S., Risueño, R.M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., Levadoux-Martin, M., and Bhatia, M. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468, 521-526. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi, K., Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-676. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi, K., Yamanaka, S. (2015). A developmental framework for induced pluripotency. Dev Camb Engl, 142, 3274-3285. [Google Scholar]
  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861-872. [CrossRef] [PubMed] [Google Scholar]
  • Thom, C.S., Traxler, E.A., Khandros, E., Nickas, J.M., Zhou, O.Y., Lazarus, J.E., Silva, A.P.G., Prabhu, D., Yao, Y., Aribeana, C., Fuchs S.Y., Mackay J.P., Holzbaur E.L., and Weiss, M.J. (2014). Trim58 degrades Dynein and regulates terminal erythropoiesis. Dev Cell, 30, 688-700. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145-1147. [CrossRef] [PubMed] [Google Scholar]
  • Vidal, S.E., Amlani, B., Chen, T., Tsirigos, A., and Stadtfeld, M. (2014). Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Rep, 3, 574-584. [CrossRef] [Google Scholar]
  • Vo, L.T., Daley, G.Q. (2015). De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood, 125, 2641-2648. [CrossRef] [PubMed] [Google Scholar]
  • Wang, L., Du, Y., Ward, J.M., Shimbo, T., Lackford, B., Zheng, X., Miao, Y., Zhou, B., Han, L., Fargo, D.C., Jothi R., Williams C.J., Wade P.A., and Hu, G. (2014). INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell, 14, 575-591. [CrossRef] [Google Scholar]
  • Wang, W., Yang, J., Liu, H., Lu, D., Chen, X., Zenonos, Z., Campos, L.S., Rad, R., Guo, G., Zhang, S., Bradley A., and Liu P. (2011). Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci USA, 108, 18283-18288. [CrossRef] [Google Scholar]
  • Worringer, K.A., Rand, T.A., Hayashi, Y., Sami, S., Takahashi, K., Tanabe, K., Narita, M., Srivastava, D., and Yamanaka, S. (2014). The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell, 14, 40-52. [CrossRef] [Google Scholar]
  • Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin I.I., and Thomson J.A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917-1920. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, L., Flygare, J., Wong, P., Lim, B., and Lodish, H.F. (2011). miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev, 25, 119-124. [CrossRef] [PubMed] [Google Scholar]
  • Zovein, A.C., Hofmann, J.J., Lynch, M., French, W.J., Turlo, K.A., Yang, Y., Becker, M.S., Zanetta, L., Dejana, E., Gasson, J.C., Tallquist M.D., and Iruela-Arispe M.L. (2008). Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell, 3, 625-636. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.