Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 210, Numéro 4, 2016
|
|
---|---|---|
Page(s) | 297 - 309 | |
Section | Epigénétique : du fondamental au translationnel | |
DOI | https://doi.org/10.1051/jbio/2017002 | |
Publié en ligne | 22 mars 2017 |
- Achour, M., LeGras, S., Keime, C., Parmentier, F., Lejeune, F.X., Boutillier, A.L., Neri, C., Davidson, I., Merienne, K. (2015). Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington’s disease mice. Hum Mol Genet, 24, 3481-3496. [CrossRef] [PubMed] [Google Scholar]
- Alarcon, J.M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E.R., Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice : a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42, 947-959. [CrossRef] [PubMed] [Google Scholar]
- Alberini, C.M., Kandel, E.R. (2014). The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol, 7, a021741. [PubMed] [Google Scholar]
- Allis, C.D., Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nat Rev Genet, 17, 487-500. [CrossRef] [PubMed] [Google Scholar]
- Arner, E., Daub, C.O., Vitting-Seerup, K., Andersson, R., Lilje, B., Drablos, F., Lennartsson, A., Ronnerblad, M., Hrydziuszko, O., Vitezic, M., Freeman, T.C., Alhendi, A.M., Arner, P., Axton, R., Baillie, J.K., Beckhouse, A., Bodega, B., Briggs, J., Brombacher, F., Davis, M., Detmar, M., Ehrlund, A., Endoh, M., Eslami, A., Fagiolini, M., Fairbairn, L., Faulkner, G.J., Ferrai, C., Fisher, M.E., Forrester, L., Goldowitz, D., Guler, R., Ha, T., Hara, M., Herlyn, M., Ikawa, T., Kai, C., Kawamoto, H., Khachigian, L.M., Klinken, S.P., Kojima, S., Koseki, H., Klein, S., Mejhert, N., Miyaguchi, K., Mizuno, Y., Morimoto, M., Morris, K.J., Mummery, C., Nakachi, Y., Ogishima, S., Okada-Hatakeyama, M., Okazaki, Y., Orlando, V., Ovchinnikov, D., Passier, R., Patrikakis, M., Pombo, A., Qin, X.Y., Roy, S., Sato, H., Savvi, S., Saxena, A., Schwegmann, A., Sugiyama, D., Swoboda, R., Tanaka, H., Tomoiu, A., Winteringham, L.N., Wolvetang, E., Yanagi-Mizuochi, C., Yoneda, M., Zabierowski, S., Zhang, P., Abugessaisa, I., Bertin, N., Diehl, A.D., Fukuda, S., Furuno, M., Harshbarger, J., Hasegawa, A., Hori, F., Ishikawa-Kato, S., Ishizu, Y., Itoh, M., Kawashima, T., Kojima, M., Kondo, N., Lizio, M., Meehan, T.F., Mungall, C.J., Murata, M., Nishiyori-Sueki, H., Sahin, S., Nagao-Sato, S., Severin, J., de Hoon, M.J., Kawai, J., Kasukawa, T., Lassmann, T., Suzuki, H., Kawaji, H., Summers, K.M., Wells, C., FANTOM Consortium Hume, D.A., Forrest, A.R., Sandelin, A., Carninci, P., Hayashizaki, Y. (2015). Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 347, 1010-1014. [CrossRef] [PubMed] [Google Scholar]
- Balasubramanyam, K., Swaminathan, V., Ranganathan, A., Kundu, T.K. (2003). Small molecule modulators of histone acetyltransferase p300. J Biol Chem, 278, 19134-19140. [CrossRef] [PubMed] [Google Scholar]
- Bannister, A.J., Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res, 21, 381-395. [CrossRef] [PubMed] [Google Scholar]
- Barrett, R.M., Malvaez, M., Kramar, E., Matheos, D.P., Arrizon, A., Cabrera, S.M., Lynch, G., Greene, R.W., Wood, M.A. (2011). Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology, 36, 1545-1556. [CrossRef] [PubMed] [Google Scholar]
- Benito, E., Barco, A. (2010). CREB’s control of intrinsic and synaptic plasticity : implications for CREB-dependent memory models. Trends Neurosci, 33, 230-240. [CrossRef] [PubMed] [Google Scholar]
- Benito, E., Urbanke, H., Ramachandran, B., Barth, J., Halder, R., Awasthi, A., Jain, G., Capece, V., Burkhardt, S., Navarro-Sala, M., Nagarajan, S., Schütz, A.L., Johnsen, S.A., Bonn, S., Lührmann, R., Dean, C., Fischer, A. (2015). HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest, 125, 3572-3584. [PubMed] [Google Scholar]
- Bernstein, A.I., Lin, Y., Street, R.C., Lin, L., Dai, Q., Yu, L., Bao, H., Gearing, M., Lah, J.J., Nelson, P.T., He, C., Levey, A.I., Mullé, J.G., Duan, R., Jin, P. (2016). 5-Hydroxy-methylation-associated epigenetic modifiers of Alzheimer’s disease modulate Tau-induced neurotoxicity. Hum Mol Genet, 25, 2437-2450. [PubMed] [Google Scholar]
- Bero, A.W., Meng, J., Cho, S., Shen, A.H., Canter, R.G., Ericsson, M., Tsai, L.H. (2014). Early remodeling of the neocortex upon episodic memory encoding. Proc Natl Acad Sci USA, 111, 11852-11857. [CrossRef] [Google Scholar]
- Bharadwaj, R., Peter, C.J., Jiang, Y., Roussos, P., Vogel-Ciernia, A., Shen, E.Y., Mitchell, A.C., Mao, W., Whittle, C., Dincer, A., Jakovcevski, M., Pothula, V., Rasmussen, T.P., Giakoumaki, S.G., Bitsios, P., Sherif, A., Gardner, P.D., Ernst, P., Ghose, S., Sklar, P., Haroutunian, V., Tamminga, C., Myers, R.H., Futai, K., Wood, M.A., Akbarian, S. (2014). Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron, 84, 997-1008. [PubMed] [Google Scholar]
- Boland, M.J., Nazor, K.L., Loring, J.F. (2014). Epigenetic regulation of pluripotency and differentiation. Circ Res, 115, 311-324. [Google Scholar]
- Bousiges, O., Neidl, R., Majchrzak, M., Muller, M.A., Barbelivien, A., Pereira de Vasconcelos, A., Schneider, A., Loeffler, J.P., Cassel, J.C., Boutillier, A.L. (2013). Detection of Histone Acetylation Levels in the Dorsal Hippocampus Reveals Early Tagging on Specific Residues of H2B and H4 Histones in Response to Learning. PloS one, 8, e57816. [PubMed] [Google Scholar]
- Bousiges, O., Vasconcelos, A.P., Neidl, R., Cosquer, B., Herbeaux, K., Panteleeva, I., Loeffler, J.P., Cassel, J.C., Boutillier, A.L. (2010). Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology, 35, 2521-2537. [CrossRef] [PubMed] [Google Scholar]
- Cacabelos, R., Torrellas, C. (2015). Epigenetics of Aging and Alzheimer’s Disease : Implications for Pharmacogenomics and Drug Response. Int J Mol Sci, 16, 30483-30543. [CrossRef] [PubMed] [Google Scholar]
- Calo, E., Wysocka, J. (2013). Modification of enhancer chromatin : what, how, and why? Mol Cell, 49, 825-837. [CrossRef] [PubMed] [Google Scholar]
- Cedar, H., Bergman, Y. (2009). Linking DNA methylation and histone modification : patterns and paradigms. Nat Rev Genet, 10, 295-304. [CrossRef] [PubMed] [Google Scholar]
- Chatterjee, S., Mizar, P., Cassel, R., Neidl, R., Selvi, B.R., Mohankrishna, D.V., Vedamurthy, B.M., Schneider, A., Bousiges, O., Mathis, C., Cassel, J.C., Eswaramoorthy, M., Kundu, T.K., Boutillier, A.L. (2013). A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci, 33, 10698-10712. [CrossRef] [PubMed] [Google Scholar]
- Coppede, F. (2014). The potential of epigenetic therapies in neurodegenerative diseases. Front Genet, 5, 220. [PubMed] [Google Scholar]
- Day, J.J., Sweatt, J.D. (2012). Epigenetic treatments for cognitive impairments. Neuropsychopharmacology, 37, 247-260. [CrossRef] [PubMed] [Google Scholar]
- De Jager, P.L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L.C., Yu, L., Eaton, M.L., Keenan, B.T., Ernst, J., McCabe, C., Tang, A., Raj, T., Replogle, J., Brodeur, W., Gabriel, S., Chai, H.S., Younkin, C., Younkin, S.G., Zou, F., Szyf, M., Epstein, C.B., Schneider, J.A., Bernstein, B.E., Meissner, A., Ertekin-Taner, N., Chibnik, L.B., Kellis, M., Mill, J., Bennett, D.A. (2014). Alzheimer’s disease : early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci, 17, 1156-1163. [CrossRef] [PubMed] [Google Scholar]
- Deans, C., Maggert, K.A. (2015). What do you mean, ”epigenetic”? Genetics, 199, 887-896. [PubMed] [Google Scholar]
- Deaton, A.M., Bird, A. (2011). CpG islands and the regulation of transcription. Genes Dev, 25, 1010-1022. [CrossRef] [PubMed] [Google Scholar]
- Du, Q., Luu, P.L., Stirzaker, C., Clark, S.J. (2015). Methyl-CpG-binding domain proteins : readers of the epigenome. Epigenomics, 7, 1051-1073. [PubMed] [Google Scholar]
- Fatt, M., Hsu, K., He, L., Wondisford, F., Miller, F.D., Kaplan, D.R., Wang, J. (2015). Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation. Stem Cell Reports, 5, 988-995. [PubMed] [Google Scholar]
- Feng, J., Shao, N., Szulwach, K.E., Vialou, V., Huynh, J., Zhong, C., Le, T., Ferguson, D., Cahill, M.E., Li, Y., Koo, J.W., Ribeiro, E., Labonte, B., Laitman, B.M., Estey, D., Stockman, V., Kennedy, P., Couroussé, T., Mensah, I., Turecki, G., Faull, K.F., Ming, G.L., Song, H., Fan, G., Casaccia, P., Shen, L., Jin, P., Nestler, E.J. (2015). Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci, 18, 536-544. [CrossRef] [PubMed] [Google Scholar]
- Fischer, A., Sananbenesi, F., Mungenast, A., Tsai, L.H. (2010). Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci, 31, 605-617. [CrossRef] [PubMed] [Google Scholar]
- Francelle, L., Galvan, L., Brouillet, E. (2014). Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington’s disease. Front Cell Neurosci, 8, 295. [CrossRef] [PubMed] [Google Scholar]
- Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J., Beal, M.F. (2005). Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem, 280, 556-563. [CrossRef] [PubMed] [Google Scholar]
- Gjoneska, E., Pfenning, A.R., Mathys, H., Quon, G., Kundaje, A., Tsai, L.H., Kellis, M. (2015). Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature, 518, 365-369. [CrossRef] [PubMed] [Google Scholar]
- Glajch, K.E., Sadri-Vakili, G. (2015). Epigenetic Mechanisms Involved in Huntington’s Disease Pathogenesis. J Huntingtons Dis, 4, 1-15. [PubMed] [Google Scholar]
- Graff, J., Tsai, L.H. (2013). Histone acetylation : molecular mnemonics on the chromatin. Nat Rev Neurosci, 14, 97-111. [Google Scholar]
- Guo, J.U., Su, Y., Zhong, C., Ming, G.L., Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145, 423-434. [CrossRef] [PubMed] [Google Scholar]
- Halder, R., Hennion, M., Vidal, R.O., Shomroni, O., Rahman, R.U., Rajput, A., Centeno, T.P., van Bebber, F., Capece, V., Garcia Vizcaino, J.C., Schuetz, A.L., Burkhardt, S., Benito, E., Navarro Sala, M., Javan, S.B., Haass, C., Schmid, B., Fischer, A., Bonn, S. (2016). DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci, 19, 102-110. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Hardingham, G.E., Chawla, S., Cruzalegui, F.H., Bading, H. (1999). Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron, 22, 789-798. [PubMed] [Google Scholar]
- Harrison, I.F., Crum, W.R., Vernon, A.C., Dexter, D.T. (2015). Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors. Br J Pharmacol, 172, 4200-4215. [PubMed] [Google Scholar]
- Herman, D., Jenssen, K., Burnett, R., Soragni, E., Perlman, S.L., Gottesfeld, J.M. (2006). Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol, 2, 551-558. [CrossRef] [PubMed] [Google Scholar]
- Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-André, V., Sigova, A.A., Hoke, H.A., Young, R.A. (2013). Super-enhancers in the control of cell identity and disease. Cell, 155, 934-947. [CrossRef] [PubMed] [Google Scholar]
- Hockly, E., Richon, V.M., Woodman, B., Smith, D.L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P.A., Steffan, J.S., Marsh, J.L., Thompson, L.M., Lewis, C.M., Marks, P.A., Bates, G.P. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA, 100, 2041-2046. [CrossRef] [Google Scholar]
- Hodges, A., Strand, A.D., Aragaki, A.K., Kuhn, A., Sengstag, T., Hughes, G., Elliston, L.A., Hartog, C., Goldstein, D.R., Thu, D., Hollingsworth, Z.R., Collin, F., Synek, B., Holmans, P.A., Young, A.B., Wexler, N.S., Delorenzi, M., Kooperberg, C., Augood, S.J., Faull, R.L., Olson, J.M., Jones, L., Luthi-Carter, R. (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet, 15, 965-977. [CrossRef] [PubMed] [Google Scholar]
- Holliday, R. (2006). Epigenetics : a historical overview. Epigenetics, 1, 76-80. [CrossRef] [PubMed] [Google Scholar]
- Jenuwein, T., Allis, C.D. (2001). Translating the histone code. Science, 293, 1074-1080. [CrossRef] [PubMed] [Google Scholar]
- Joo, J.Y., Schaukowitch, K., Farbiak, L., Kilaru, G., Kim, T.K. (2016). Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat Neurosci, 19, 75-83. [CrossRef] [PubMed] [Google Scholar]
- Jordi, E., Heiman, M., Marion-Poll, L., Guermonprez, P., Cheng, S.K., Nairn, A.C., Greengard, P., Girault, J.A. (2013). Differential effects of cocaine on histone posttranslational modifications in identified populations of striatal neurons. Proc Natl Acad Sci USA, 110, 9511-9516. [CrossRef] [Google Scholar]
- Katche, C., Bekinschtein, P., Slipczuk, L., Goldin, A., Izquierdo, I.A., Cammarota, M., Medina, J.H. (2010). Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proc Natl Acad Sci USA, 107, 349-354. [CrossRef] [Google Scholar]
- Kazantsev, A.Walker, H.A., Slepko, N., Bear, J.E., Preisinger, E., Steffan, J.S., Zhu, Y.Z., Gertler, F.B., Housman, D.E., Marsh, J.L., Thompson, L.M. (2002). A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat Genet, 30, 367-376. [CrossRef] [PubMed] [Google Scholar]
- Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., Markenscoff-Papadimitriou, E., Kuhl, D., Bito, H., Worley, P.F., Kreiman, G., Greenberg, M.E. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465, 182-187. [CrossRef] [PubMed] [Google Scholar]
- Korzus, E. (2010). Manipulating the brain with epigenetics. Nat Neurosci, 13, 405-406. [CrossRef] [PubMed] [Google Scholar]
- Korzus, E., Rosenfeld, M.G., Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42, 961-972. [CrossRef] [PubMed] [Google Scholar]
- Kuhn, A., Goldstein, D.R., Hodges, A., Strand, A.D., Sengstag, T., Kooperberg, C., Becanovic, K., Pouladi, M.A., Sathasivam, K., Cha, J.H., Hannan, A.J., Hayden, M.R., Leavitt, B.R., Dunnett, S.B., Ferrante, R.J., Albin, R., Shelbourne, P., Delorenzi, M., Augood, S.J., Faull, R.L., Olson, J.M., Bates, G.P., Jones, L., Luthi-Carter, R. (2007). Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet, 16, 1845-1861. [CrossRef] [PubMed] [Google Scholar]
- Labadorf, A., Hoss, A.G., Lagomarsino, V., Latourelle, J.C., Hadzi, T.C., Bregu, J., MacDonald, M.E., Gusella, J.F., Chen, J.F., Akbarian, S., Weng, Z., Myers, R.H. (2015). RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression. PloS one, 10, e0143563. [PubMed] [Google Scholar]
- Lacar, B., Linker, S.B., Jaeger, B.N., Krishnaswami, S., Barron, J., Kelder, M., Parylak, S., Paquola, A., Venepally, P., Novotny, M., O’Connor, C., Fitzpatrick, C., Erwin, J., Hsu, J.Y., Husband, D., McConnell, M.J., Lasken, R., Gage, F.H. (2016). Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun, 7, 11022. [PubMed] [Google Scholar]
- Landgrave-Gomez, J., Mercado-Gomez, O., Guevara-Guzman, R. (2015). Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci, 9, 58. [PubMed] [Google Scholar]
- Langfelder, P., Cantle, J.P., Chatzopoulou, D., Wang, N., Gao, F., Al-Ramahi, I., Lu, X.H., Ramos, E.M., El-Zein, K., Zhao, Y., Deverasetty, S., Tebbe, A., Schaab, C., Lavery, D.J., Howland, D., Kwak, S., Botas, J., Aaronson, J.S., Rosinski, J., Coppola, G., Horvath, S., Yang, X.W. (2016). Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci, 19, 623-633. [CrossRef] [PubMed] [Google Scholar]
- Lazo-Gomez, R., Ramirez-Jarquin, U.N., Tovar, Y.R.L.B., Tapia, R. (2013). Histone deacetylases and their role in motor neuron degeneration. Front Cell Neurosci, 7, 243. [CrossRef] [PubMed] [Google Scholar]
- Lesburguères, E., Gobbo, O.L., Alaux-Cantin, S., Hambucken, A., Trifilieff, P., Bontempi, B. (2011). Early tagging of cortical networks is required for the formation of enduring associative memory. Science, 331, 924-928. [CrossRef] [PubMed] [Google Scholar]
- LevMaor, G., Yearim, A., Ast, G. (2015). The alternative role of DNA methylation in splicing regulation. Trends Genet, 31, 274-280. [PubMed] [Google Scholar]
- Liu, L., Jin, G., Zhou, X. (2015). Modeling the relationship of epigenetic modifications to transcription factor binding. Nucleic Acids Res, 43, 3873-3885. [CrossRef] [PubMed] [Google Scholar]
- Lonze, B.E., Ginty, D.D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35, 605-623. [PubMed] [Google Scholar]
- Lopez-Atalaya, J.P., Barco, A. (2014). Can changes in histone acetylation contribute to memory formation? Trends Genet, 30, 529-539. [PubMed] [Google Scholar]
- Lopez-Atalaya, J.P., Ito, S., Valor, L.M., Benito, E., Barco, A. (2013). Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res, 41, 8072-8084. [CrossRef] [PubMed] [Google Scholar]
- Lunnon, K., Smith, R., Hannon, E., De Jager, P.L., Srivastava, G., Volta, M., Troakes, C., Al-Sarraj, S., Burrage, J., Macdonald, R., Condliffe, D., Harries, L.W., Katsel, P., Haroutunian, V., Kaminsky, Z., Joachim, C., Powell, J., Lovestone, S., Bennett, D.A., Schalkwyk, L.C., Mill, J. (2014). Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci, 17, 1164-1170. [CrossRef] [PubMed] [Google Scholar]
- Lyons, M.R., West, A.E. (2011). Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol, 94, 259-295. [CrossRef] [PubMed] [Google Scholar]
- Maddox, S.A., Watts, C.S., Schafe, G.E. (2013). p300/CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala. Learn Mem, 20, 109-119. [CrossRef] [PubMed] [Google Scholar]
- Malik, A.N., Vierbuchen, T., Hemberg, M., Rubin, A.A., Ling, E., Couch, C.H., Stroud, H., Spiegel, I., Farh, K.K., Harmin, D.A., Greenberg, M.E. (2014). Genome-wide identification and characterization of functional neuronal activity-dependent enhancers. Nat Neurosci, 17, 1330-1339. [CrossRef] [PubMed] [Google Scholar]
- Marconett, C.N., Zhou, B., Rieger, M.E., Selamat, S.A., Dubourd, M., Fang, X., Lynch, S.K., Stueve, T.R., Siegmund, K.D., Berman, B.P., Borok, Z., Laird-Offringa, I.A. (2013). Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation. PLoS Genet, 9, e1003513. [CrossRef] [PubMed] [Google Scholar]
- Meadows, J.P., Guzman-Karlsson, M.C., Phillips, S., Brown, J.A., Strange, S.K., Sweatt, J.D., Hablitz, J.J. (2016). Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci Signal, 9, ra83. [PubMed] [Google Scholar]
- Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S., Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151, 1417-1430. [PubMed] [Google Scholar]
- Mielcarek, M., Benn, C.L., Franklin, S.A., Smith, D.L., Woodman, B., Marks, P.A., Bates, G.P. (2011). SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PloS one, 6, e27746. [PubMed] [Google Scholar]
- Minatohara, K., Akiyoshi, M., Okuno, H. (2015). Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace. Front Mol Neurosci, 8, 78. [PubMed] [Google Scholar]
- Nucifora, F.C. Jr., Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V.L., Dawson, T.M., Ross, C.A. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 291, 2423-2428. [CrossRef] [PubMed] [Google Scholar]
- Ortega-Martinez, S. (2015). A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci, 8, 46. [PubMed] [Google Scholar]
- Pastor, W.A., Aravind, L., Rao, A. (2013). TETonic shift : biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol, 14, 341-356. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Peixoto, L., Abel, T. (2013). The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology, 38, 62-76. [CrossRef] [PubMed] [Google Scholar]
- Peixoto, L.L., Wimmer, M.E., Poplawski, S.G., Tudor, J.C., Kenworthy, C.A., Liu, S., Mizuno, K., Garcia, B.A., Zhang, N.R., Giese, K., Abel, T. (2015). Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics, 16 Suppl 5, S5. [Google Scholar]
- Rajarajan, P., Gil, S.E., Brennand, K.J., Akbarian, S. (2016). Spatial genome organization and cognition. Nat Rev Neurosci, 17, 681-691. [PubMed] [Google Scholar]
- Roth, T.L., Sweatt, J.D. (2011). Annual Research Review : Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry, 52, 398-408. [CrossRef] [PubMed] [Google Scholar]
- Ryu, H., Lee, J., Olofsson, B.A., Mwidau, A., Dedeoglu, A., Escudero, M., Flemington, E., Azizkhan-Clifford, J., Ferrante, R.J., Ratan, R.R. (2003). Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA, 100, 4281-4286. [CrossRef] [Google Scholar]
- Sadri-Vakili, G., Bouzou, B., Benn, C.L., Kim, MO., Chawla, P., Overland, R.P., Glajch, K.E., Xia, E., Qiu, Z., Hersch, S.M., Clark, T.W., Yohrling, G.J., Cha, J.H. (2007). Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum Mol Genet, 16, 1293-1306. [CrossRef] [PubMed] [Google Scholar]
- Schaukowitch, K., Kim, T.K. (2014). Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience, 264, 25-38. [CrossRef] [PubMed] [Google Scholar]
- Schneider, A., Chatterjee, S., Bousiges, O., Selvi, B.R., Swaminathan, A., Cassel, R., Blanc, F., Kundu, T.K., Boutillier, A.L. (2013). Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics, 10, 568-588. [Google Scholar]
- Selvi, B.R., Cassel, J.C., Kundu, T.K. andBoutillier, A.L. (2010). Tuning acetylation levels with HAT activators : therapeutic strategy in neurodegenerative diseases. Biochim Biophys Acta, 1799, 840-853. [PubMed] [Google Scholar]
- Seredenina, T., Luthi-Carter, R. (2012). What have we learned from gene expression profiles in Huntington’s disease? Neurobiol Dis, 45, 83-98. [CrossRef] [PubMed] [Google Scholar]
- Sharma, S., Taliyan, R. (2015a). Targeting histone deacetylases : a novel approach in Parkinson’s disease. Parkinsons Dis, 2015, 303294. [PubMed] [Google Scholar]
- Sharma, S., Taliyan, R. (2015b). Transcriptional dysregulation in Huntington’s disease : The role of histone deacetylases. Pharmacol Res, 100, 157-169. [PubMed] [Google Scholar]
- Shimomura, A., Patel, D., Wilson, S.M., Koehler, K.R., Khanna, R., Hashino, E. (2015). Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. PloS one, 10, e0135060. [PubMed] [Google Scholar]
- Shin, J., Ming, G.L., Song, H. (2015). Seeking a roadmap toward neuroepigenetics. Neuron, 86, 12-15. [PubMed] [Google Scholar]
- Song, C.X., Szulwach, K.E., Fu, Y., Dai, Q., Yi, C., Li, X., Li, Y., Chen, C.H., Zhang, W., Jian, X., Wang, J., Zhang, L., Looney, T.J., Zhang, B., Godley, L.A., Hicks, L.M., Lahn, B.T., Jin, P., He, C. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 29, 68-72. [CrossRef] [PubMed] [Google Scholar]
- Souto, J.A., Benedetti, R., Otto, K., Miceli, M., Alvarez, R., Altucci, L., de Lera, A.R. (2010). New anacardic acid-inspired benzamides : histone lysine acetyltransferase activators. Chem Med Chem, 5, 1530-1540. [CrossRef] [Google Scholar]
- Steffan, J.S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B.L., Kazantsev, A., Schmidt, E., Zhu, Y.Z., Greenwald, M., Kurokawa, R., Housman, D.E., Jackson, G.R., Marsh, J.L., Thompson, L.M. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413, 739-743. [CrossRef] [PubMed] [Google Scholar]
- Sweatt, J.D. (2013). The emerging field of neuroepigenetics. Neuron, 80, 624-632. [PubMed] [Google Scholar]
- Szulwach, K.E., Li, X., Li, Y., Song, C.X., Han, J.W., Kim, S., Namburi, S., Hermetz, K., Kim, J.J., Rudd, M.K., Yoon, Y.S., Ren, B., He, C., Jin, P. (2011a). Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet, 7, e1002154. [CrossRef] [PubMed] [Google Scholar]
- Szulwach, K.E., Li, X., Li, Y., Song, C.X., Wu, H., Dai, Q., Irier, H., Upadhyay, A.K., Gearing, M., Levey, A.I., Vasanthakumar, A., Godley, L.A., Chang, Q., Cheng, X., He, C., Jin, P. (2011b). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14, 1607-1616. [CrossRef] [PubMed] [Google Scholar]
- Thakurela, S., Sahu, S.K., Garding, A., Tiwari, V.K. (2015). Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity. Genome Res, 25, 1309-1324. [CrossRef] [PubMed] [Google Scholar]
- Thomas, E.A., Coppola, G., Desplats, P.A., Tang, B., Soragni, E., Burnett, R., Gao, F., Fitzgerald, K.M., Borok, J.F., Herman, D., Geschwind, D.H., Gottesfeld, J.M. (2008). The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA, 105, 15564-15569. [CrossRef] [Google Scholar]
- Tie, F., Banerjee, R., Saiakhova, A.R., Howard, B., Monteith, K.E., Scacheri, P.C., Cosgrove, M.S., Harte, P.J. (2014). Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing. Development, 141, 1129-1139. [CrossRef] [PubMed] [Google Scholar]
- Urdinguio, R.G., Sanchez-Mut, J.V., Esteller, M. (2009). Epigenetic mechanisms in neurological diseases : genes, syndromes, and therapies. Lancet Neurol, 8, 1056-1072. [CrossRef] [PubMed] [Google Scholar]
- Valor, L.M. (2015). Epigenetic-based therapies in the preclinical and clinical treatment of Huntington’s disease. Int J Biochem Cell Biol, 67, 45-48. [CrossRef] [PubMed] [Google Scholar]
- Valor, L.M., Viosca, J., Lopez-Atalaya, J.P., Barco, A. (2013). Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr Pharm Des, 19, 5051-5064. [CrossRef] [PubMed] [Google Scholar]
- Vashishtha, M., Ng, C.W., Yildirim, F., Gipson, T.A., Kratter, I.H., Bodai, L., Song, W., Lau, A., Labadorf, A., Vogel-Ciernia, A., Troncosco, J., Ross, C.A., Bates, G.P., Krainc, D., Sadri-Vakili, G., Finkbeiner, S., Marsh, J.L., Housman, D.E., Fraenkel, E., Thompson, L.M. (2013). Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci USA, 110, E3027-3036. [CrossRef] [Google Scholar]
- Wang, F., Fischhaber, P.L., Guo, C., Tang, T.S. (2014). Epigenetic modifications as novel therapeutic targets for Huntington’s disease. Epigenomics, 6, 287-297. [PubMed] [Google Scholar]
- Wang, J., Weaver, I.C., Gauthier-Fisher, A., Wang, H., He, L., Yeomans, J., Wondisford, F., Kaplan, D.R., Miller, F.D. (2010). CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain. Dev Cell, 18, 114-125. [PubMed] [Google Scholar]
- Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., Young, R.A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 153, 307-319. [CrossRef] [PubMed] [Google Scholar]
- Wu, H., Nord, A.S., Akiyama, J.A., Shoukry, M., Afzal, V., Rubin, E.M., Pennacchio, L.A., Visel, A. (2014). Tissue-specific RNA expression marks distant-acting developmental enhancers. PLoS Genet, 10, e1004610. [CrossRef] [PubMed] [Google Scholar]
- Zovkic, I.B., Guzman-Karlsson, M.C., Sweatt, J.D. (2013). Epigenetic regulation of memory formation and maintenance. Learn Mem, 20, 61-74. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.