Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 210, Numéro 4, 2016
|
|
---|---|---|
Page(s) | 283 - 295 | |
Section | Epigénétique : du fondamental au translationnel | |
DOI | https://doi.org/10.1051/jbio/2016028 | |
Publié en ligne | 22 mars 2017 |
- Alkhatib S.G., Landry, J.W. (2011). The nucleosome remodeling factor. FEBS Letters, 585, 3197-3207. [CrossRef] [PubMed] [Google Scholar]
- Cancer Genome Atlas Network (2015). Genomic Classification of Cutaneous Melanoma. Cell, 161, 1681-1696. [CrossRef] [PubMed] [Google Scholar]
- Carreira S., Goodall, J., Aksan, I., La Rocca, S.A., Galibert, M.D., Denat, L., Larue, L., Goding, C.R. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature, 433, 764-769. [CrossRef] [PubMed] [Google Scholar]
- Carreira S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., Goding, C.R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev, 20, 3426-3439. [CrossRef] [PubMed] [Google Scholar]
- Cheli Y., Ohanna, M., Ballotti, R., Bertolotto, C. (2010). Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res, 23, 27-40. [Google Scholar]
- Cheli Y., Guiliano, S., Botton, T., Rocchi, S., Hofman, V., Hofman, P., Bahadoran, P., Bertolotto, C., Ballotti, R. (2011). Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene, 30, 2461-2470 . [Google Scholar]
- Cheli Y., Giuliano, S., Fenouille, N., Allegra, M., Hofman, V., Hofman, P., Bahadoran, P., Lacour, J.P., Tartare-Deckert, S., Bertolotto, C., Ballotti, R. (2012). Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene, 31, 2461-2470. [CrossRef] [PubMed] [Google Scholar]
- Dar A.A., Nosrati, M., Bezrookove, V., de Semir, D., Majid, S., Thummala, S., Sun, V., Tong, S., Leong, S.P., Minor, D., Billings, P.R., Soroceanu, L., Debs, R., Miller, J.R., 3rd, Sagebiel, R.W., Kashani-Sabet, M. (2015). The Role of BPTF in Melanoma Progression and in Response to BRAF-Targeted Therapy. J Natl Cancer Inst, 107. [Google Scholar]
- de la Serna, I.L., Ohkawa, Y., Higashi, C., Dutta, C., Osias, J., Kommajosyula, N., Tachibana, T., Imbalzano, A.N. (2006). The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J Biol Chem, 281, 20233-20241. [CrossRef] [PubMed] [Google Scholar]
- Delmas V., Martinozzi, S., Bourgeois, Y., Holzenberger, M., Larue, L. (2003). Cre-mediated recombination in the skin melanocyte lineage. Genesis, 36, 73-80. [CrossRef] [PubMed] [Google Scholar]
- Denecker G., Vandamme, N., Akay, O., Koludrovic, D., Taminau, J., Lemeire, K., Gheldof, A., De Craene, B., Van Gele, M., Brochez, L., Udupi, G.M., Rafferty, M., Balint, B., Gallagher, W.M., Ghanem, G., Huylebroeck, D., Haigh, J., van den Oord, J., Larue, L., Davidson, I., Marine, J.C., Berx, G. (2014). Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ, 21, 1250-1261. [PubMed] [Google Scholar]
- Ferlay J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J.W., Comber, H., Forman, D., Bray, F. (2013). Cancer incidence and mortality patterns in Europe : estimates for 40 countries in 2012. Eur J Cancer, 49, 1374-1403. [CrossRef] [PubMed] [Google Scholar]
- Forsea A.M., Del Marmol, V., de Vries, E., Bailey, E.E., Geller, A.C. (2012). Melanoma incidence and mortality in Europe : new estimates, persistent disparities. Br J Dermatol, 167, 1124-1130. [CrossRef] [PubMed] [Google Scholar]
- Freter R., Osawa, M., Nishikawa, S. (2010). Adult stem cells exhibit global suppression of RNA polymerase II serine-2 phosphorylation. Stem Cells, 28, 1571-1580. [PubMed] [Google Scholar]
- Garbe C., Peris, K., Hauschild, A., Saiag, P., Middleton, M., Spatz, A., Grob, J.J., Malvehy, J., Newton-Bishop, J., Stratigos, A., Pehamberger, H., Eggermont, A.M., European Dermatology, F., European Association of, D.-O., European Organization of Research and Treatment of Cancer. (2012). Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline–Update 2012. Eur J Cancer, 48, 2375-2390. [CrossRef] [PubMed] [Google Scholar]
- Giuliano S., Cheli, Y., Ohanna, M., Bonet, C., Beuret, L., Bille, K., Loubat, A., Hofman, V., Hofman, P., Ponzio, G., Bahadoran, P., Ballotti, R., Bertolotto, C. (2010). Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res, 70, 3813-3822. [Google Scholar]
- Goding C.R. (2000). Mitf from neural crest to melanoma : signal transduction and transcription in the melanocyte lineage. Genes Dev, 14, 1712-1728. [PubMed] [Google Scholar]
- Goding C.R. (2016). Targeting the lncRNA SAMMSON Reveals Metabolic Vulnerability in Melanoma. Cancer Cell, 29, 619-621. [CrossRef] [PubMed] [Google Scholar]
- Goodall J., Carreira, S., Denat, L., Kobi, D., Davidson, I., Nuciforo, P., Sturm, R.A., Larue, L., Goding, C.R. (2008). Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res, 68, 7788-7794. [Google Scholar]
- Haq R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G.C., Frederick, D.T., Hurley, A.D., Nellore, A., Kung, A.L., Wargo, J.A., Song, J.S., Fisher, D.E., Arany, Z., Widlund, H.R. (2013). Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell, 23, 302-315. [CrossRef] [PubMed] [Google Scholar]
- Harris M.L., Buac, K., Shakhova, O., Hakami, R.M., Wegner, M., Sommer, L., Pavan, W.J. (2013). A dual role for SOX10 in the maintenance of the postnatal melanocyte lineage and the differentiation of melanocyte stem cell progenitors. PLoS Genet, 9, e1003644. [CrossRef] [PubMed] [Google Scholar]
- Hodgkinson C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell, 74, 395-404. [PubMed] [Google Scholar]
- Hodis E., Watson, I.R., Kryukov, G.V., Arold, S.T., Imielinski, M., Theurillat, J.P., Nickerson, E., Auclair, D., Li, L., Place, C., Dicara, D., Ramos, A.H., Lawrence, M.S., Cibulskis, K., Sivachenko, A., Voet, D., Saksena, G., Stransky, N., Onofrio, R.C., Winckler, W., Ardlie, K., Wagle, N., Wargo, J., Chong, K., Morton, D.L., Stemke-Hale, K., Chen, G., Noble, M., Meyerson, M., Ladbury, J.E., Davies, M.A., Gershenwald, J.E., Wagner, S.N., Hoon, D.S., Schadendorf, D., Lander, E.S., Gabriel, S.B., Getz, G., Garraway, L.A., Chin, L. (2012). A landscape of driver mutations in melanoma. Cell, 150, 251-263. [PubMed] [Google Scholar]
- Hoek K.S., Eichhoff, O.M., Schlegel, N.C., Dobbeling, U., Kobert, N., Schaerer, L., Hemmi, S., Dummer, R. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res, 68, 650-656. [Google Scholar]
- Hoek K.S., Goding, C.R. (2010). Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res, 23, 746-759. [Google Scholar]
- Keenen B., Qi, H., Saladi, S.V., Yeung, M., de la Serna, I.L. (2010). Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma. Oncogene, 29, 81-92. [CrossRef] [PubMed] [Google Scholar]
- Koludrovic D., Laurette, P., Strub, T., Keime, C., Le Coz, M., Coassolo, S., Mengus, G., Larue, L., Davidson, I. (2015). Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells. PLoS Genet, 11, e1005555. [CrossRef] [PubMed] [Google Scholar]
- Laurette P., Strub, T., Koludrovic, D., Keime, C., Le Gras, S., Seberg, H., Van Otterloo, E., Imrichova, H., Siddaway, R., Aerts, S., Cornell., R.A, Mengus, G., Davidson, I. (2015). Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells. eLife, 10.7554/eLife.06857. [Google Scholar]
- Leucci, E., Vendramin, R., Spinazzi, M., Laurette, P., Fiers, M., Wouters, J., Radaelli, E., Eyckerman, S., Leonelli, C., Vanderheyden, K., Rogiers, A., Hermans, E., Baatsen, P., Aerts, S., Amant, F., Van Aelst, S., van den Oord, J., de Strooper, B., Davidson, I., Lafontaine, D.L., Gevaert, K., Vandesompele, J., Mestdagh, P., Marine, J.C. (2016). Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 531, 518-522. [CrossRef] [PubMed] [Google Scholar]
- Levy C., Khaled, M., Fisher, D.E. (2006). MITF : master regulator of melanocyte development and melanoma oncogene. Trends Mol Med, 12, 406-414. [CrossRef] [PubMed] [Google Scholar]
- Li W., Cornell, R.A. (2007). Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol, 304, 338-354. [PubMed] [Google Scholar]
- Li J., Song, J.S., Bell, R.J., Tran, T.N., Haq, R., Liu, H., Love, K.T., Langer, R., Anderson, D.G., Larue, L., Fisher, D.E. (2012). YY1 regulates melanocyte development and function by cooperating with MITF. PLoS Genet, 8, e1002688. [CrossRef] [PubMed] [Google Scholar]
- Nishikawa S.I., Osawa, M. (2005). Melanocyte system for studying stem cell niche. Ernst Schering Research Foundation Workshop, 1-13. [Google Scholar]
- Nishimura E.K. (2011). Melanocyte stem cells : a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res, 24, 401-410. [Google Scholar]
- Ohanna M., Giuliano, S., Bonet, C., Imbert, V., Hofman, V., Zangari, J., Bille, K., Robert, C., Bressac- de Paillerets, B., Hofman, P., Rocchi, S., Peyron, J.F., Lacour, J.P., Ballotti, R., Bertolotto, C. (2011). Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev, 25, 1245-1261. [CrossRef] [PubMed] [Google Scholar]
- Osawa M., Egawa, G., Mak, S.S., Moriyama, M., Freter, R., Yonetani, S., Beermann, F., Nishikawa, S. (2005). Molecular characterization of melanocyte stem cells in their niche. Development, 132, 5589-5599. [CrossRef] [PubMed] [Google Scholar]
- Pogenberg V., Ogmundsdottir, M.H., Bergsteinsdottir, K., Schepsky, A., Phung, B., Deineko, V., Milewski, M., Steingrimsson, E., Wilmanns, M. (2012). Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev, 26, 2647-2658. [CrossRef] [PubMed] [Google Scholar]
- Rabbani P., Takeo, M., Chou, W., Myung, P., Bosenberg, M., Chin, L., Taketo, M.M., Ito, M. (2011). Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell, 145, 941-955. [PubMed] [Google Scholar]
- Schepsky A., Bruser, K., Gunnarsson, G.J., Goodall, J., Hallsson, J.H., Goding, C.R., Steingrimsson, E., Hecht, A. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol Cell Biol, 26, 8914-8927. [CrossRef] [PubMed] [Google Scholar]
- Shakhova O., Zingg, D., Schaefer, S.M., Hari, L., Civenni, G., Blunschi, J., Claudinot, S., Okoniewski, M., Beermann, F., Mihic-Probst, D., Moch, H., Wegner, M., Dummer, R., Barrandon, Y., Cinelli, P., Sommer, L. (2012). Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol, 14, 882-890. [CrossRef] [PubMed] [Google Scholar]
- Steingrimsson E., Copeland, N.G., Jenkins, N.A. (2004). Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet, 38, 365-411. [CrossRef] [PubMed] [Google Scholar]
- Steingrimsson, E., Moore, K.J., Lamoreux, M.L., Ferre-D’Amare, A.R., Burley, S.K., Zimring, D.C., Skow, L.C., Hodgkinson, C.A., Arnheiter, H., Copeland, N.G., Jenkins A. (1994). Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet, 8, 256-263. [CrossRef] [PubMed] [Google Scholar]
- Strub T., Giuliano, S., Ye, T., Bonet, C., Keime, C., Kobi, D., Le Gras, S., Cormont, M., Ballotti, R., Bertolotto, C., Davidson, I. (2011). Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene, 30, 2319-2332. [CrossRef] [PubMed] [Google Scholar]
- Tachibana M., Perez-Jurado, L.A., Nakayama, A., Hodgkinson, C.A., Li, X., Schneider, M., Miki, T., Fex, J., Francke, U., Arnheiter, H. (1994). Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum Mol Genet, 3, 553-557. [CrossRef] [PubMed] [Google Scholar]
- Tanimura S., Tadokoro, Y., Inomata, K., Binh, N.T., Nishie, W., Yamazaki, S., Nakauchi, H., Tanaka, Y., McMillan, J.R., Sawamura, D., Yancey, K., Shimizu, H., Nishimura, E.K. (2011). Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell, 8, 177-187. [Google Scholar]
- Tassabehji M., Newton, V.E., Read, A.P. (1994). Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet, 8, 251-255. [CrossRef] [PubMed] [Google Scholar]
- Tsukiyama T., Wu, C. (1995). Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell, 83, 1011-1020. [PubMed] [Google Scholar]
- Tsukiyama T., Daniel, C., Tamkun, J., Wu, C. (1995). ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell, 83, 1021-1026. [PubMed] [Google Scholar]
- Vazquez F., Lim, J.H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., Clish, C.B., Granter, S.R., Widlund, H.R., Spiegelman, B.M., Puigserver, P. (2013). PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell, 23, 287-301. [CrossRef] [PubMed] [Google Scholar]
- Verfaillie A., Imrichova, H., Atak, Z.K., Dewaele, M., Rambow, F., Hulselmans, G., Christiaens, V., Svetlichnyy, D., Luciani, F., Van den Mooter, L., Claerhout, S., Fiers, M., Journe, F., Ghanem, G.E., Herrmann, C., Halder, G., Marine, J.C., Aerts, S. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun, 6, 6683. [PubMed] [Google Scholar]
- Vermeulen M., Eberl, H.C., Matarese, F., Marks, H., Denissov, S., Butter, F., Lee, K.K., Olsen, J.V., Hyman, A.A., Stunnenberg, H.G., Mann, M. (2010). Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, 142, 967-980. [PubMed] [Google Scholar]
- Weider M., Kuspert, M., Bischof, M., Vogl, M.R., Hornig, J., Loy, K., Kosian, T., Muller, J., Hillgartner, S., Tamm, E.R., Metzger, D., Wegner, M. (2012). Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination. Dev Cell, 23, 193-201. [PubMed] [Google Scholar]
- Widmer D.S., Cheng, P.F., Eichhoff, O.M., Belloni, B.C., Zipser, M.C., Schlegel, N.C., Javelaud, D., Mauviel, A., Dummer, R., Hoek, K.S. (2012). Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res, 25, 343-353. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.