Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 210, Numéro 4, 2016
|
|
---|---|---|
Page(s) | 269 - 282 | |
Section | Epigénétique : du fondamental au translationnel | |
DOI | https://doi.org/10.1051/jbio/2017004 | |
Publié en ligne | 22 mars 2017 |
- Allis C.D., Berger S.L., Cote J., Dent S., Jenuwien T., Kouzarides T., Pillus L., Reinberg D., Shi Y., Shiekhattar R., Shilatifard A., Workman J., Zhang Y. (2007). New nomenclature for chromatin-modifying enzymes. Cell, 131, 633–636. [CrossRef] [PubMed] [Google Scholar]
- Alvarez M.E., Nota F., Cambiagno D.A. (2010). Epigenetic control of plant immunity. Mol Plant Pathol, 11, 563–576. [CrossRef] [PubMed] [Google Scholar]
- Alvarez-Venegas R., Pien S., Sadder M., Witmer X., Grossniklaus U., Avramova Z. (2003). ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol, 13, 627–637. [CrossRef] [PubMed] [Google Scholar]
- Alvarez-Venegas R., Avramova Z. (2005). Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res, 33, 5199–5207. [CrossRef] [PubMed] [Google Scholar]
- Alvarez-Venegas, R., Sadder, M., Hlavacka, A., Baluska, F., Xia, Y., Lu, G., Firsov, A., Sarath, G., Moriyama, H., Dubrovsky, J.G., Avramova, Z. (2006). The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc Natl Acad Sci USA, 103, 6049–6054. [CrossRef] [Google Scholar]
- Alvarez-Venegas R., Abdallat A.A., Guo M., Alfano J.R., Avramova Z. (2007). Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics, 2, 106–113. [CrossRef] [PubMed] [Google Scholar]
- Andrews AJ, Luger K. (2011). Nucleosome structure(s) and stability : variations on a theme. Annu Rev Biophys, 40, 99-117. [PubMed] [Google Scholar]
- Aquea F., Vega A., Timmermann T., Poupin M.J., Arce-Johnson P. (2011). Genome-wide analysis of the SET DOMAIN GROUP family in grapevine. Plant Cell Reports, 30, 1087–1097. [CrossRef] [PubMed] [Google Scholar]
- Bernstein B.E., Mikkelsen T.S., Xie X., Kamal M., Huebert D.J., Cuff J., Fry B., Meissner A., Wernig M., Plath K., Jaenisch R., Wagschal A., Feil R., Schreiber S.L., Lander E.S. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326. [CrossRef] [PubMed] [Google Scholar]
- Berr A., Xu L., Gao J., Cognat V., Steinmetz A., Dong A., Shen W.H. (2009). SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol, 151, 1476–1485. [PubMed] [Google Scholar]
- Berr A., Shen W.H., (2010). Molecular mechanisms in epigenetic regulation of plant growth and development. Plant Dev Biol—Biotechnol Perspect, Vol 2, 325–344. [CrossRef] [Google Scholar]
- Berr A., McCallum E.J., Alioua A., Heintz D., Heitz T., Shen W.H. (2010a). Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol, 154, 1403–1414. [PubMed] [Google Scholar]
- Berr A., McCallum E.J., Ménard R., Meyer D., Fuchs J., Dong A., Shen W.H., (2010b). Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell, 22, 3232–3248. [CrossRef] [PubMed] [Google Scholar]
- Berr A., Shafiq S., Pinon V., Dong A., Shen W.H. (2015). The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway. Plant J, 81, 316–328. [CrossRef] [PubMed] [Google Scholar]
- Bobadilla R. , Berr A. (2016). Histone Methylation - A Cornerstone for Plant Responses to Environmental Stresses? In : Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives, A. Shanker (Ed.), InTech, Chapter 2, 31-61 [Google Scholar]
- Bu Z., Yu Y., Li Z., Liu Y., Jiang W., Huang Y., Dong A.W. (2014). Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet, 10, e1004617. [CrossRef] [PubMed] [Google Scholar]
- Cartagena J.A., Matsunaga S., Seki M., Kurihara D., Yokoyama M., Shinozaki K., Fujimoto S., Azumi Y., Uchiyama S., Fukui K. (2008). The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol, 315, 355–368. [PubMed] [Google Scholar]
- Cazzonelli C.I., Cuttriss A.J., Cossetto S.B., Pye W., Crisp P., Whelan J., Finnegan E.J., Turnbull C., Pogson B.J. (2009). Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell, 21, 39–53. [CrossRef] [PubMed] [Google Scholar]
- Cazzonelli C.I., Nisar N., Roberts A.C., Murray K.D., Borevitz J.O., Pogson B.J. (2014). A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation. Front Plant Sci, 21, 5 :533. [EDP Sciences] [Google Scholar]
- Chapman R.D., Heidemann M., Hintermair C., Eick D. (2008). Molecular evolution of the RNA polymerase II CTD. Trends Genet, 24, 289–296. [PubMed] [Google Scholar]
- Chen Q., Chen X., Wang Q., Zhang F., Lou Z., Zhang Q., Zhou D.X. (2013). Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet, 9, e1003239. [CrossRef] [PubMed] [Google Scholar]
- Chen X., Liu X., Zhao Y., Zhou D.X. (2015). Histone H3K4me3 and H3K27me3 regulatory genes control stable transmission of an epimutation in rice. Sci Rep, 19, 5 :13251. [Google Scholar]
- Choi S.C., Lee S., Kim S.R., Lee Y.S., Liu C., Cao X., An G. (2014). Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol, 164, 1326–1337. [PubMed] [Google Scholar]
- Crevillén P., Yang H., Cui X., Greeff C., Trick M., Qiu Q., Cao X., Dean C. (2014). Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature, 515, 587–590. [CrossRef] [PubMed] [Google Scholar]
- Cui X., Jin P., Gu L., Lu Z., Xue Y., Wei L, Qi J., Song X., Luo M., An G., Cao X. (2013). Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci USA, 110, 1953–1958. [CrossRef] [Google Scholar]
- de La Paz Sanchez M., Gutierrez C. (2009). Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription. Proc Natl Acad Sci USA, 106, 2065–2070. [CrossRef] [Google Scholar]
- de-La-Peña C., Rangel-Cano A., Alvarez-Venegas R. (2012). Regulation of disease-responsive genes mediated by epigenetic factors : interaction of Arabidopsis-Pseudomonas. Mol Plant Pathol, 13, 388–398. [CrossRef] [PubMed] [Google Scholar]
- Deleris A., Greenberg M.V., Ausin I., Law R.W., Moissiard G., Schubert D., Jacobsen S.E. (2010). Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO Rep, 11, 950–955. [CrossRef] [PubMed] [Google Scholar]
- Ding Y., Avramova Z., Fromm M. (2011a). The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J, 66, 735–744. [CrossRef] [PubMed] [Google Scholar]
- Ding Y., Avramova Z., Fromm M. (2011b). Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes. Plant Cell, 23, 350–363. [CrossRef] [PubMed] [Google Scholar]
- Ding Y., Ndamukong I., Xu Z., Lapko H., Fromm M., Avramova Z. (2012). ATX1-generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1-regulated genes. PLoS Genet, 8, e1003111. [CrossRef] [PubMed] [Google Scholar]
- Du Z., Li H., Wei Q., Zhao X., Wang C., Zhu Q., Yi X., Xu W., Liu X.S., Jin W., Su Z. (2013). Genome-wide analysis of histone modifications : H3K4me2 H3K4me3 H3K9ac, and H3K27ac in Oryza sativa L. Japonica. Mol Plant, 6, 1463–1472. [CrossRef] [PubMed] [Google Scholar]
- Egloff S., Murphy S. (2008). Cracking the RNA polymerase II CTD code. Trends Genet, 24, 280–288. [PubMed] [Google Scholar]
- Eick D., Geyer M. (2013). The RNA polymerase II carboxy-terminal domain (CTD) code. Chem Rev, 113, 8456–8490. [PubMed] [Google Scholar]
- Frietze S., O’Geen H., Blahnik K.R., Jin V.X., Farnham P.J. (2010). ZNF274 recruits the histone methyltransferase SETDB1 to the 3’ ends of ZNF genes. PLoS One, 5, e15082. [PubMed] [Google Scholar]
- Fromm M., Avramova Z. (2014). ATX1/AtCOMPASS and the H3K4me3 marks : how do they activate Arabidopsis genes? Curr Opin Plant Biol, 21, 75-82. [Google Scholar]
- Grini P.E., Thorstensen T., Alm V., Vizcay-Barrena G., Windju S.S., Jôrstad T.S., Wilson Z.A., Aalen R.B. (2009). The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. PLoS One, 4, e7817. [PubMed] [Google Scholar]
- Gu T., Han Y., Huang R., McAvoy R.J., Li Y. (2016). Identification and characterization of histone lysine methylation modifiers in Fragaria vesca. Sci Rep, 6, 6 :23581. [Google Scholar]
- Guo L., Yu Y., Law J.A., Zhang X. (2010). SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci USA, 107, 18557–18562. [CrossRef] [Google Scholar]
- Hajheidari M., Koncz C., Eick D. (2013). Emerging roles for RNA polymerase II CTD in Arabidopsis. Trends Plant Sci, 18, 633–643. [CrossRef] [PubMed] [Google Scholar]
- He Y., Michaels S.D., Amasino R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science, 302, 1751–1754. [CrossRef] [PubMed] [Google Scholar]
- Hoppmann V., Thorstensen T., Kristiansen P.E., Veiseth S.V., Rahman M.A., Finne K., Aalen R.B., Aasland R. (2011). The CW domain, a new histone recognition module in chromatin proteins. EMBO J, 18, 1939–1952. [Google Scholar]
- Hu Y., Liu D., Zhong X., Zhang C., Zhang Q., Zhou D.X. (2012). CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome. Proc Natl Acad Sci USA, 10, 5773–5778. [CrossRef] [Google Scholar]
- Huang Y., Liu C., Shen W.H., Ruan Y. (2011). Phylogenetic analysis and classification of the Brassica rapa SET-domain protein family. BMC Plant Biol, 11, 175. [CrossRef] [PubMed] [Google Scholar]
- Huang Y., Chen D., Liu C., Shen W.H., Ruan Y. (2016). Evolution and conservation of JmjC domain proteins in the green lineage. Mol Genet Genomics, 291, 33-49. [CrossRef] [PubMed] [Google Scholar]
- Jenuwein T., Allis C.D. (2001). Translating the histone code. Science, 293, 1074–1080. [CrossRef] [PubMed] [Google Scholar]
- Jeong J.H., Song H.R., Ko J.H., Jeong Y.M., Kwon Y.E., Seol J.H., Amasino R.M., Noh B., Noh Y.S. (2009). Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One, 4, e8033. [PubMed] [Google Scholar]
- Jiang D., Yang W., He Y., Amasino R.M. (2007). Arabidopsis relatives of the human Lysine-Specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell, 19, 2975–2987. [CrossRef] [PubMed] [Google Scholar]
- Jiang D., Gu X., He Y. (2009). Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell, 21, 1733–1746. [CrossRef] [PubMed] [Google Scholar]
- Kim S.Y., He Y., Jacob Y., Noh Y.S., Michaels S., Amasino R. (2005). Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyltransferase. Plant Cell, 17, 3301–3310. [CrossRef] [PubMed] [Google Scholar]
- Kim S., Lee J., Yang J.Y., Jung C., Chua N.H. (2013). Arabidopsis histone methyltransferase SET DOMAIN GROUP2 is required for regulation of various hormone responsive genes. J Plant Biol, 56, 39–48. [Google Scholar]
- Kolasinska-Zwierz P., Down T., Latorre I., Liu T., Liu X.S., Ahringer J. (2009). Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet, 41, 376–381. [CrossRef] [PubMed] [Google Scholar]
- Kumpf R., Thorstensen T., Rahman M.A., Heyman J., Nenseth H.Z., Lammens T., Herrmann U., Swarup R., Veiseth S.V., Emberland G., Bennett M.J., De Veylder L., Aalen R.B. (2014). The ASH1-RELATED3 SET-domain protein controls cell division competence of the meristem and the quiescent center of the Arabidopsis primary root. Plant Physiol, 16, 632–643. [Google Scholar]
- LeMasson I., Jauvion V., Bouteiller N., Rivard M., Elmayan T., Vaucheret H. (2012). Mutations in the Arabidopsis H3K4me2/3 demethylase JMJ14 suppress posttranscriptional gene silencing by decreasing transgene transcription. Plant Cell, 24, 3603–3612. [CrossRef] [PubMed] [Google Scholar]
- Lee W.Y., Lee D., Chung W.I., Kwon C.S. (2009). Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J, 58, 511–524. [CrossRef] [PubMed] [Google Scholar]
- Lee J., Yun J.Y., Zhao W., Shen W.H., Amasino R.M. (2015). A methyltransferase required for proper timing of the vernalization response in Arabidopsis. Proc Natl Acad Sci USA, 112, 2269–2274. [CrossRef] [Google Scholar]
- Lee S., Fu F., Xu S., Lee S.Y., Yun D.J., Mengiste T. (2016). Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases. Plant Cell, 28, 1640–1661. [PubMed] [Google Scholar]
- Li Y., Mukherjee I., Thum K.E., Tanurdzic M., Katari M.S., Obertello M., Edwards M.B., McCombie W.R., Martienssen R.A., Coruzzi G.M. (2015). The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biol, 19, 16 :79. [Google Scholar]
- Liu B., Berr A., Chang C., Liu C., Shen W.H., Ruan Y. (2016a). Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development. Biochim Biophys Acta, 1859, 581–590. [PubMed] [Google Scholar]
- Liu B., Wei G., Shi J., Jin J., Shen T., Ni T., Shen W.H., Yu Y., Dong A. (2016b). SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa). New Phytol, 210, 577–588. [CrossRef] [PubMed] [Google Scholar]
- Liu Y., Min J. (2016). Structure and function of histone methylation-binding proteins in plants. Biochem J, 473, 1663–1680. [CrossRef] [PubMed] [Google Scholar]
- López-González L., Mouriz A., Narro-Diego L., Bustos R., Martínez-Zapater J.M., Jarillo J.A., Piñeiro M. (2014). Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins. Plant Cell, 26, 3922–3938. [CrossRef] [PubMed] [Google Scholar]
- Lu F., Cui X., Zhang S., Liu C., Cao X. (2010). JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res, 20, 387–390. [PubMed] [Google Scholar]
- Luco R.F., Pan Q., Tominaga K., Blencowe B.J., Pereira-Smith O.M., Misteli T. (2010). Regulation of alternative splicing by histone modifications. Science, 327, 996–1000. [CrossRef] [PubMed] [Google Scholar]
- McCabe M.T., Ott H.M., Ganji G., Korenchuk S., Thompson C., Van Aller G.S., Liu Y., Graves A.P., Della Pietra A., Diaz E., LaFrance L.V., Mellinger M., Duquenne C., Tian X., Kruger R.G., McHugh C.F., Brandt M., Miller W.H., Dhanak D., Verma S.K., Tummino P.J., Creasy C.L. (2012). EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 492, 108–112. [CrossRef] [PubMed] [Google Scholar]
- Molitor A.M., Bu Z., Yu Y., Shen W.H. (2014). Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet, 10, e1004091. [CrossRef] [PubMed] [Google Scholar]
- Nelissen H., Boccardi T.M., Himanen K., Van Lijsebettens M. (2007). Impact of core histone modifications on transcriptional regulation and plant growth. Crit Rev Plant Sci, 26, 243–263. [CrossRef] [Google Scholar]
- Ng D.W., Wang T., Chandrasekharan M.B., Aramayo R., Kertbundit S., Hall T.C. (2007). Plant SET domain-containing proteins : structure, function and regulation. Biochim Biophys Acta, 1769, 316–329. [PubMed] [Google Scholar]
- Noman A., Aqeel M., He S. (2016). CRISPR-Cas9 : Tool for Qualitative and Quantitative Plant Genome Editing. Front Plant Sci, 21, 7, 1740. [Google Scholar]
- Palma K., Thorgrimsen S., Malinovsky F.G., Fiil B.K., Nielsen H.B., Brodersen P., Hofius D., Petersen M., Mundy J. (2010). Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog, 6, e1001137. [PubMed] [Google Scholar]
- Pien S., Fleury D., Mylne J.S., Crevillen P., Inzé D., Avramova Z., Dean C., Grossniklaus U., (2008). ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell, 20, 580–588. [CrossRef] [PubMed] [Google Scholar]
- Pontvianne F., Blevins T., Pikaard C.S. (2010). Arabidopsis histone lysine methyltransferases. Adv Bot Res, 53, 1–22. [CrossRef] [PubMed] [Google Scholar]
- Roitinger E., Hofer M., Köcher T., Pichler P., Novatchkova M., Yang J., Schlögelhofer P., Mechtler K. (2015). Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol Cell Proteomics, 14, 556–571. [CrossRef] [PubMed] [Google Scholar]
- Roudier F., Ahmed I., Bérard C., Sarazin A., Mary-Huard T., Cortijo S., Bouyer D., Caillieux E., Duvernois-Berthet E., Al-Shikhley L., Giraut L., Després B., Drevensek S., Barneche F., Dèrozier S., Brunaud V., Aubourg S., Schnittger A., Bowler C., Martin-Magniette M.L., Robin S., Caboche M., Colot V. (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J, 30, 1928–1938. [CrossRef] [PubMed] [Google Scholar]
- Saleh A., Alvarez-Venegas R., Yilmaz M., Le O., Hou G., Sadder M., Al-Abdallat A., Xia Y., Lu G., Ladunga I., Avramova Z. (2008). The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell, 20, 568–579. [CrossRef] [PubMed] [Google Scholar]
- Schmitges F.W., Prusty A.B., Faty M., Stützer A., Lingaraju G.M., Aiwazian J., Sack R., Hess D., Li L., Zhou S., Bunker R.D., Wirth U., Bouwmeester T., Bauer A., Ly-Hartig N., Zhao K., Chan H., Gu J., Gut H., Fischle W., Müller J., Thomä N.H. (2011). Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell, 42, 330–341. [CrossRef] [PubMed] [Google Scholar]
- Searle I.R., Pontes O., Melnyk C.W., Smith L.M., Baulcombe D.C. (2010). JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis. Genes Dev, 24, 986–991. [CrossRef] [PubMed] [Google Scholar]
- Shafiq S., Berr A., Shen W.H. (2014). Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation. New Phytol, 201, 312–322. [CrossRef] [PubMed] [Google Scholar]
- She W., Grimanelli D., Rutowicz K., Whitehead M.W., Puzio M., Kotlinski M., Jerzmanowski A., Baroux C. (2013). Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development, 140, 4008–4019. [CrossRef] [PubMed] [Google Scholar]
- Shen W.-H., Xu L. (2009). Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol Plant, 2, 600–609. [CrossRef] [PubMed] [Google Scholar]
- Shi J., Dong A., Shen W.H. (2015). Epigenetic regulation of rice flowering and reproduction. Front Plant Sci, 28, 803. [Google Scholar]
- Strahl B.D., Allis C.D. (2000). The language of covalent histone modifications. Nature, 403, 41–45. [CrossRef] [PubMed] [Google Scholar]
- Sui P., Jin J., Ye S., Mu C., Gao J., Feng H., Shen W.H., Yu Y., Dong A. (2012). H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J, 70, 340–347. [CrossRef] [PubMed] [Google Scholar]
- Sui P., Shi J., Gao X., Shen W.H., Dong A. (2013). H3K36 methylation is involved in promoting rice flowering. Mol Plant, 6, 975–977. [CrossRef] [PubMed] [Google Scholar]
- Sun C., Fang J., Zhao T., Xu B., Zhang F., Liu L., Tang J., Zhang G., Deng X., Chen F., Qian Q., Cao X., Chu C. (2012). The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. Plant Cell, 24, 3235–3247. [CrossRef] [PubMed] [Google Scholar]
- Tamada Y., Yun J.Y., Woo S.C., Amasino R.M. (2009). ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell, 21, 3257–3269. [CrossRef] [PubMed] [Google Scholar]
- Thorstensen T., Grini P., Mercy I., Alm V., Erdal S., Aasland R., Aalen R. (2008). The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS). Plant Mol Biol, 66, 47–59. [CrossRef] [PubMed] [Google Scholar]
- Valencia-Morales Mdel P., Camas-Reyes J.A., Cabrera-Ponce J.L., Alvarez-Venegas R. (2012). The Arabidopsis thaliana SET-domain-containing protein ASHH1/SDG26 interacts with itself and with distinct histone lysine methyltransferases. J Plant Res, 125, 679–692. [CrossRef] [PubMed] [Google Scholar]
- Wang X., Chen J., Xie Z., Liu S., Nolan T., Ye H., Zhang M., Guo H., Schnable P.S., Li Z., Yin Y. (2014). Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana. Mol Plant, 7, 1303–1315. [CrossRef] [PubMed] [Google Scholar]
- Xia S., Cheng Y.T., Huang S., Win J., Soards A., Jinn T.L., Jones J.D., Kamoun S., Chen S., Zhang Y., Li X. (2013). Regulation of transcription of nucleotide-binding leucine-rich repeat-encoding genes SNC1 and RPP4 via H3K4 trimethylation. Plant Physiol, 162, 1694-705. [PubMed] [Google Scholar]
- Xiao J., Lee U.S., Wagner D. (2016). Tug of war : adding and removing histone lysine methylation in Arabidopsis. Curr Opin Plant Biol, 7, 41–53. [Google Scholar]
- Xu L., Zhao Z., Dong A., Soubigou-Taconnat L., Renou J.P., Steinmetz A., Shen W.H. (2008). Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol, 28, 1348–1360. [CrossRef] [PubMed] [Google Scholar]
- Xu Y., Gan E.S., Zhou J., Wee W.Y., Zhang X., Ito T. (2014). Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res, 42, 10960-10974. [CrossRef] [PubMed] [Google Scholar]
- Yang H., Han Z., Cao Y., Fan D., Li H., Mo H., Feng Y., Liu L., Wang Z., Yue Y., Cui S., Chen S., Chai J., Ma L. (2012a). A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genet, 8, e1002664. [CrossRef] [PubMed] [Google Scholar]
- Yang H., Mo H, Fan D, Cao Y, Cui S, Ma L. (2012b). Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. Plant Cell Rep, 31, 1297–1308. [CrossRef] [PubMed] [Google Scholar]
- Yang H., Howard M., Dean C. (2016). Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC. Proc Natl Acad Sci USA, 113, 9369–9374. [CrossRef] [Google Scholar]
- Yang W., Jiang D., Jiang J., He Y., (2010). A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J, 62, 663–673. [CrossRef] [PubMed] [Google Scholar]
- Yao X., Feng H., Yu Y., Dong A., Shen W.H. (2013). SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PLoS One, 8, e56537. [PubMed] [Google Scholar]
- Yokoo T., Saito H., Yoshitake Y., Xu Q., Asami T., Tsukiyama T., Teraishi M., Okumoto Y., Tanisaka T. (2014). Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1. PLoS One, 9, e96064. [PubMed] [Google Scholar]
- Yu C.W., Liu X., Luo M., Chen C., Lin X., Tian G., Lu Q., Cui Y., Wu K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol, 156, 173–184. [PubMed] [Google Scholar]
- Yuan W., Xu M., Huang C., Liu N., Chen S., Zhu B. (2011). H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem, 286, 7983–7989. [CrossRef] [PubMed] [Google Scholar]
- Yun M., Wu J., Workman J.L., Li B. (2011). Readers of histone modifications. Cell Res, 21, 564–578. [PubMed] [Google Scholar]
- Zhao Z., Yu Y., Meyer D., Wu C., Shen W.H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol, 7, 1256–1260. [CrossRef] [PubMed] [Google Scholar]
- Zhao H., Zhu X., Wang K., Gent J.I., Zhang W., Dawe R.K., Jiang J. (2015). Gene Expression and Chromatin Modifications Associated with Maize Centromeres. G3, 6, 183–192. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.