Accès gratuit
Biologie Aujourd'hui
Volume 210, Numéro 4, 2016
Page(s) 259 - 268
Section Comment le cerveau contrôle-t-il notre équilibre énergétique ?
Publié en ligne 22 mars 2017
  • Abizaid, A., Liu, Z.-W., Andrews, Z.B., Shanabrough, M., Borok, E., Elsworth, J.D., Roth, R.H., Sleeman, M.W., Picciotto, M.R., Tschöp, M.H., Gao, X.B., Horvath, T.L. (2006). Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest, 116, 3229-3239. [CrossRef] [PubMed] [Google Scholar]
  • Adrian, T.E., Ferri, G.L., Bacarese-Hamilton, A.J., Fuessl, H.S., Polak, J.M., Bloom, S.R. (1985).Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology, 89, 1070-1077. [CrossRef] [PubMed] [Google Scholar]
  • Aigner, M, Treasure, J., Kaye, W, Kasper, S., & The WFSBP Task Force on Eating Disorders. (2011). World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J Biol Psychiatry, 12, 400-443. [CrossRef] [PubMed] [Google Scholar]
  • Avena, N.M., Rada, P., Hoebel, B.G. (2008). Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience, 156, 865-871. [CrossRef] [PubMed] [Google Scholar]
  • Azzara, A.V., Sokolnicki, J.P., Schwartz, G.J. (2002). Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition. Physiol Behav, 77, 411-416. [PubMed] [Google Scholar]
  • Benabid, A.L., Pollak, P., Louveau, A., Henry, S., de Rougemont, J. (1987). Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol, 50, 344-346. [PubMed] [Google Scholar]
  • Benabid, A.L., Krack, P.P., Benazzouz, A., Limousin, P., Koudsie, A., Pollak, P. (2000). Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology, 55, S40-S44. [PubMed] [Google Scholar]
  • Bernard, C. Lectures on the Phenomena of Life Common to Animals and Plants. Charles C Thomas, Springfield, Illinois, USA, 1974. [Google Scholar]
  • Bernardis, L.L., Bellinger, L.L. (1996). The lateral hypothalamic area revisited: Ingestive behavior. Neurosci Biobehav Rev, 20, 189-287. [PubMed] [Google Scholar]
  • Berthoud, H.-R., Münzberg, H. (2011). The lateral hypothalamus as integrator of metabolic and environmental needs: From electrical self-stimulation to opto-genetics. Physiol Behav, 104, 29-39. [PubMed] [Google Scholar]
  • Berthoud, H.R. (2002). Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev, 26, 393-428. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Breit, S., Schulz, J.B., Benabid, A.L. (2004). Deep brain stimulation. Cell Tissue Res, 318, 275-288. [CrossRef] [PubMed] [Google Scholar]
  • Breton, J., Legrand, R., Akkermann, K., Järv, A., Harro, J., Déchelotte, P., Fetissov, S.O. (2016a). Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int J Eat Disord, 49, 805-808. [PubMed] [Google Scholar]
  • Breton, J., Tennoune, N., Lucas, N., François, M., Legrand, R., Jacquemot, J., Goichon, A., Guérin, C., Peltier, J., Pestel-Caron, M., Chan, P., Vaudry, D., do Rego, J.C., Liénard, F., Pénicaud, L., Fioramonti, X., Ebenezer, I.S., Hökfelt, T., Déchelotte, P., Fetissov, S.O. (2016b). Gut commensal E.coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab, 23, 324-334. [CrossRef] [PubMed] [Google Scholar]
  • Broca, P. (1878). Anatomie comparée des circonvolutions cérébrales: Le grand lobe limbique et la scissure limbique dans la série des mammifères. Revue d’Anthropologie, 1, 385-498. [Google Scholar]
  • Cannon, W.B. (1935). Stresses and strains of homeostasis. Am J Med Sci, 189, 13-14. [Google Scholar]
  • Castro, D.C., Berridge, K.C. (2014). Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J Neurosci, 34, 4239-4250. [CrossRef] [PubMed] [Google Scholar]
  • Cone, R.D. (1999). The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab, 10, 211-216. [CrossRef] [PubMed] [Google Scholar]
  • Cowley, M.A, Smart, J.L., Rubinstein, M., Cerdan, M.G., Diano, S., Horvath, T.L., Cone, R.D., Low, M.J. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411, 480-484. [CrossRef] [PubMed] [Google Scholar]
  • Cummings, D.E. (2006). Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav, 89, 71-84. [PubMed] [Google Scholar]
  • Dahlström, A., Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand, 62 (Suppl. 232), 1-55. [Google Scholar]
  • Denis, R.G.P., Joly-Amado, A., Webber, E., Langlet, F., Schaeffer, M., Padilla, S.L., Cansell, C., Dehouck, B., Castel, J., Delbès, A.S., Martinez, S., Lacombe, A., Rouch, C., Kassis, N., Fehrentz, J.A., Martinez, J., Verdié P, Hnasko, T.S., Palmiter, R.D., Krashes, M.J., Güler, A.D., Magnan, C, Luquet, S. (2015). Palatability can drive feeding independent of AgRP neurons. Cell Metabolism, 22, 646-657. [CrossRef] [PubMed] [Google Scholar]
  • Dietrich, MO, Bober, J., Ferreira, J.G., Tellez, L.A., Mineur, Y.S., Souza, D.O., Gao, X.B., Picciotto, M.R., Araújo I, Liu, Z.W., Horvath, T.L. (2012). AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat Neurosci, 15, 1108-1110. [CrossRef] [PubMed] [Google Scholar]
  • Everitt, B.J., Robbins, T.W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci, 8, 1481-1489. [CrossRef] [PubMed] [Google Scholar]
  • Farooqi, I.S. (2008). Monogenic human obesity. Front Horm Res, 36, 1-11. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O., Meguid, M.M., Chen, C., Miyata, G. (2000). Synchronized release of dopamine and serotonin in the medial and lateral hypothalamus of rats. Neuroscience, 101, 657-663. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O., Hallman, J., Oreland, L., af Klinteberg, B., Grenbäck, E., Hulting, A.L., Hökfelt, T. (2002a). Autoantibodies against α-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci USA, 99, 17155-17160. [CrossRef] [Google Scholar]
  • Fetissov, S.O., Meguid, M.M., Sato, T., Zhang, L.H. (2002b). Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am J Physiol Regul Integr Comp Physiol, 283, R905-910. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O., Harro, J., Jaanisk, M., Järv, A., Podar, I., Allik, J., Nilsson, I., Sakthivel, P., Lefvert, A.K., Hökfelt, T. (2005). Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc Natl Acad Sci USA, 102, 14865-14870. [CrossRef] [Google Scholar]
  • Fetissov, S.O., Meguid, M.M. (2009). On dopamine, D2 receptor, and Taq1A polymorphism in obesity and anorexia. Nutrition, 25, 132-133. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O., Meguid, M.M. (2010). Serotonin delivery into the ventromedial nucleus of the hypothalamus affects differently feeding pattern and body weight in obese and lean Zucker rats. Appetite, 54, 346-353. [CrossRef] [PubMed] [Google Scholar]
  • Fetissov, S.O. (2017). Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol, 13, 11-25. [CrossRef] [PubMed] [Google Scholar]
  • Franco, R., Fonoff, E., Alvarenga, P., Lopes, A., Miguel, E., Teixeira, M., Damiani, D., Hamani, C. (2016). DBS for Obesity. Brain Sci, 6, 21. [Google Scholar]
  • Fuxe, K., Dahlstrom, A., Hoistad, M., Marcellino, D., Jansson, A., Rivera, A., Diaz-Cabiale, Z., Jacobsen, K., Tinner-Staines, B., Hagman, B., Leo, G., Staines, W., Guidolin, D., Kehr, J., Genedani, S., Belluardo, N., Agnati, L.F. (2007). From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev, 55, 17-54. [CrossRef] [PubMed] [Google Scholar]
  • Gerfen, C.R., Surmeier, D.J. (2011). Modulation of Striatal Projection Systems by Dopamine. Ann Rev Neurosci, 34, 441-466. [CrossRef] [PubMed] [Google Scholar]
  • Hariz, M. (2012). Twenty-five years of deep brain stimulation: Celebrations and apprehensions. Mov Dis, 27, 930-933. [CrossRef] [Google Scholar]
  • Hillebrand, J.J., de Wied, D., Adan, R.A. (2002). Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides, 23, 2283-2306. [CrossRef] [PubMed] [Google Scholar]
  • Hsu, R., Taylor, J.R., Newton, S.S., Alvaro, J.D., Haile, C., Han, G., Hruby, V.J., Nestler, E.J., Duman, R.S. (2005). Blockade of melanocortin transmission inhibits cocaine reward. Eur J Neurosci, 21, 2233-2242. [CrossRef] [PubMed] [Google Scholar]
  • Huszar, D., Lynch, C.A., Fairchild-Huntress, V., Dunmore, J.H., Fang, Q., Berkemeier, L.R., Gu, W., Kesterson, R.A., Boston, B.A., Cone, R.D., Smith, F.J., Campfield, L.A., Burn, P., Lee, F. (1997). Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell, 88, 131-141. [PubMed] [Google Scholar]
  • Kelley, A.E. (2004). Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev, 27, 765-776. [PubMed] [Google Scholar]
  • Kenny, P.J. (2011). Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci, 12, 638-651. [PubMed] [Google Scholar]
  • Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656-660. [CrossRef] [PubMed] [Google Scholar]
  • Le Magnen, J., Devos, M. (1984), Meal to meal energy balance in rats. Physiol Behav, 32, 39-44. [PubMed] [Google Scholar]
  • LeMoal, M., Simon, H. (1991). Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev, 71, 155-234. [CrossRef] [PubMed] [Google Scholar]
  • Legrand, R., Lucas, N, Breton, J., Déchelotte, P., Fetissov, S.O. (2015). Dopamine release in the lateral hypothalamus is stimulated by α-MSH in both the anticipatory and consummatory phases of feeding. Psychoneuroendocrinol, 56, 79-87. [CrossRef] [Google Scholar]
  • Leibowitz, S.F., Rossakis, C. (1979). Mapping study of brain dopamine- and epinephrine-sensitive sites which cause feeding suppression in the rat. Brain Res, 172, 101-13. [PubMed] [Google Scholar]
  • Leinninger, G.M., Jo, Y.-H., Leshan, R.L., Louis, G.W., Yang, H., Barrera, J.G., Wilson, H., Opland, D.M., Faouzi, M.A., Gong, Y., Jones, J.C., Rhodes, C.J., Chua, S. Jr., Diano, S., Horvath, T.L., Seeley, R.J., Becker, J.B., Münzberg, H., Myers, M.G. Jr. (2009). Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab, 10, 89-98. [CrossRef] [PubMed] [Google Scholar]
  • Lichtensteiger, W., Lienhart, R. (1977). Response of mesencephalic and hypothalamic dopamine neurones to alpha-MSH: mediated by area postrema? Nature, 266, 635-637. [CrossRef] [PubMed] [Google Scholar]
  • Lindblom, J., Opmane, B., Mutulis, F., Mutule, I., Petrovska, R., Klusa, V., Bergström, L., Wikberg, J.E. (2001). The MC4 receptor mediates alpha-MSH induced release of nucleus accumbens dopamine. Neuroreport, 12, 2155-2158. [CrossRef] [PubMed] [Google Scholar]
  • Lipsman, N, Woodside, D.B., Giacobbe, P., Hamani, C., Carter, J.C., Norwood, S.J., Sutandar, K., Staab, R., Elias, G., Lyman, C.H., Smith, G.S., Lozano, A.M. (2013). Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet, 381, 1361-1370. [CrossRef] [PubMed] [Google Scholar]
  • Lucas, N., Legrand, R., Akkermann, K., Harro, J., Bole-Feysot, C., Breton, J., Déchelotte, P., Fetissov, S.O. (2014). Anti-α-melanocyte-stimulating hormone autoantibodies in patients with eating disorders and melanocortin 4 receptor signaling. Eur Neuropsychopharmacol, 24, S704-S705. [Google Scholar]
  • Maclean, P.D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol, 4, 407-418. [PubMed] [Google Scholar]
  • Meguid, M.M., Yang, Z.J., Koseki, M. (1995). Eating induced rise in LHA-dopamine correlates with meal size in normal and bulbectomized rats. Brain Res Bull, 36, 487-490. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Moan, C.E., Heath, R.G. (1972). Septal stimulation for the initiation of heterosexual activity in a homosexual male. J Behav Therap Exp Psych, 3 23-30. [CrossRef] [Google Scholar]
  • Mountjoy, K.G., Mortrud, M.T., Low, M.J., Simerly, R.B., Cone, R.D. (1994). Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol, 8, 1298-1308. [PubMed] [Google Scholar]
  • Nicolaidis, S. (1981). Lateral hypothalamic control of metabolic factors related to feeding. Diabetologia, 20 Suppl, 426-434. [PubMed] [Google Scholar]
  • Olds, J., Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol, 47, 419-427. [CrossRef] [PubMed] [Google Scholar]
  • Olds, J. (1958). Self-stimulation of the brain; its use to study local effects of hunger, sex, and drugs. Science, 127, 315-24. [CrossRef] [PubMed] [Google Scholar]
  • Orosco, M., Rouch, C., Meile, M.J., Nicolaidis, S. (1995). Spontaneous feeding-related monoamine changes in rostromedial hypothalamus of the obese Zucker rat: a microdialysis study. Physiol Behav, 57, 1103-1106. [PubMed] [Google Scholar]
  • Rolls, E.T. (1975). The neural basis of brain-stimulation reward. Prog Neurobiol, 3, 73-160. [PubMed] [Google Scholar]
  • Russo, S.J., Nestler, E.J. (2013). The brain reward circuitry in mood disorders. Nat Rev Neurosci, 14, 609-625. [CrossRef] [PubMed] [Google Scholar]
  • Sato, T., Meguid, M.M., Fetissov, S.O., Chen, C., Zhang, L. (2001). Hypothalamic dopaminergic receptor expressions in anorexia of tumor-bearing rats. Am J Physiol Regul Integr Comp Physiol, 281, R1907-1916. [CrossRef] [PubMed] [Google Scholar]
  • Sawchenko, P.E. (1998). Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. J Comp Neurol, 402, 435-441. [PubMed] [Google Scholar]
  • Schwartz, M.W. (2000). Central nervous system control of food intake. Nature, 404, 661-671. [CrossRef] [PubMed] [Google Scholar]
  • Shen, W., Flajolet, M., Greengard, P., Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848-851. [CrossRef] [PubMed] [Google Scholar]
  • Simon, J.J., Skunde, M., Walther, S., Bendszus, M., Herzog, W., Friederich, H.-C. (2016). Neural signature of food reward processing in bulimic-type eating disorders. Soc Cogn Affect Neurosci, 11, 1393-1401. [Google Scholar]
  • Small, D.M., Jones-Gotman, M., Dagher, A. (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage, 19, 1709-1715. [CrossRef] [PubMed] [Google Scholar]
  • Smith, K.S., Berridge, K.C. (2007). Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci, 27, 1594-1605. [CrossRef] [PubMed] [Google Scholar]
  • Stice, E., Spoor, S., Bohon, C., Small, D.M. (2008). Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science, 322, 449-452. [CrossRef] [PubMed] [Google Scholar]
  • Stice, E., Yokum, S., Burger, K.S., Epstein, L.H., Small, D.M. (2011).Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci, 31, 4360-4366. [CrossRef] [PubMed] [Google Scholar]
  • Takagi, K., Legrand, R., Asakawa, A., Amitani, H., François, M., Tennoune, N., Coëffier, M., Claeyssens, S., do Rego, J.C., Déchelotte, P., Inui, A., Fetissov, S.O. (2013). Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans. Nat Commun, 4, 2685. [PubMed] [Google Scholar]
  • Teitelbaum, P., Stellar, E. (1954). Recovery from the failure to eat produced by hypothalamic lesions. Science, 120, 894-895. [CrossRef] [PubMed] [Google Scholar]
  • Tennoune, N., Chan, P., Breton, J., Legrand, R., Chabane, Y.N., Akkermann, K., Järv, A., Ouelaa, W., Takagi, K., Ghouzali, I., François, M., Lucas, N., Bole-Feysot, C., Pestel-Caron, M., do Rego, J.C., Vaudry, D., Harro, J., Dé, E., Déchelotte, P., Fetissov, S.O. (2014). Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide [alpha]-MSH, at the origin of eating disorders. Transl Psychiatry, 4, e458. [CrossRef] [PubMed] [Google Scholar]
  • Verhagen, L.A.W., Egecioglu, E., Luijendijk, M.C.M., Hillebrand, J.J.G, Adan, R.A.H, Dickson, S.L. (2011). Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. Eur Neuropsychopharmacol, 21, 384-392. [CrossRef] [PubMed] [Google Scholar]
  • Whiting, D.M., Tomycz, N.D., Bailes, J, de Jonge, L., Lecoultre, V., Wilent, B., Alcindor, D., Prostko, E.R., Cheng, B.C., Angle, C., Cantella, D., Whiting, B.B., Mizes, J.S., Finnis, K.W., Ravussin, E., Oh, M.Y. (2013). Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg, 119, 56-63. [PubMed] [Google Scholar]
  • Wise, R.A. (2006). Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci, 361, 1149-1158. [Google Scholar]
  • Wu, H., Van Dyck-Lippens, P.J., Santegoeds, R., van Kuyck, K., Gabriels, L., Lin, G., Pan, G., Li, Y., Li, D., Zhan, S., Sun, B., Nuttin, B. (2013). Deep-brain stimulation for anorexia nervosa. World Neurosurg, 80, S29 e1-10. [Google Scholar]
  • Wu, Q., Clark, M.S., Palmiter, R.D. (2012). Deciphering a neuronal circuit that mediates appetite. Nature, 483, 594-597. [CrossRef] [PubMed] [Google Scholar]
  • Wynne, K., Bloom, S.R. (2006). The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat Clin Pract End Met, 2, 612-620. [CrossRef] [Google Scholar]
  • Yang, Z.J., Meguid, M.M., Chai, J.K., Chen, C., Oler A. (1997). Bilateral hypothalamic dopamine infusion in male Zucker rat suppresses feeding due to reduced meal size. Pharmacol Biochem Behav, 58, 631-635. [PubMed] [Google Scholar]
  • Yaswen, L., Diehl, N., Brennan, M.B., Hochgeschwender, U. (1999). Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med, 5, 1066-1070. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.