Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 211, Numéro 1, 2017
|
|
---|---|---|
Page(s) | 1 - 18 | |
Section | Microbiote intestinal et santé (Journée Claude Bernard 2016) | |
DOI | https://doi.org/10.1051/jbio/2017008 | |
Publié en ligne | 6 juillet 2017 |
- Abe, F., Muto, M., Yaeshima, T., Iwatsuki, K., Aihara, H., Ohashi, Y., Fujisawa, T. (2010). Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe, 16, 131-136. [CrossRef] [PubMed] [Google Scholar]
- Amar, J., Burcelin, R., Ruidavets, J. B., Cani, P. D., Fauvel, J., Alessi, M. C., Chamontin, B., Ferrières, J. (2008). Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr, 87, 1219-1223. [CrossRef] [PubMed] [Google Scholar]
- Amar, J., Chabo, C., Waget, A., Klopp, P., Vachoux, C., Bermudez-Humaran, L. G., Smirnova, N., Bergé, M., Sulpice, T., Lahtinen, S., Ouwehand, A., Langella, P., Rautonen, N., Sansonetti, P. J., Burcelin, R. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes : molecular mechanisms and probiotic treatment. EMBO Mol Med, 3, 559-572. [CrossRef] [PubMed] [Google Scholar]
- Amar, J., Lange, C., Payros, G., Garret, C., Chabo, C., Lantieri, O., Courtney, M., Marre, M., Charles, M. A., Balkau, B., Burcelin, R. (2013). Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population : the D.E.S.I.R. study. PLoS One, 8, e54461. [CrossRef] [PubMed] [Google Scholar]
- Apostolopoulos, V., de Courten, M. P., Stojanovska, L., Blatch, G. L., Tangalakis, K., de Courten, B. (2016). The complex immunological and inflammatory network of adipose tissue in obesity. Mol Nutr Food Res, 60, 43-57. [CrossRef] [PubMed] [Google Scholar]
- Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., Brunak, S., Doré, J., Antolin, M., Artiguenave, F., Blottière, H. M., Almeida, M., Bréchot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte,, M., Guedon, E., Haimet, F., Huber, W., Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Mérieux, A., Melo Minardi, R., M'Rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D., Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174-180. [CrossRef] [PubMed] [Google Scholar]
- Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F., Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 101, 15718-15723. [Google Scholar]
- Bagci, B., Bagci, G., Huzmeli, C., Sezgin, I., Ozdemir, O. (2016). Associations of fractalkine receptor (CX3CR1) and CCR5 gene variants with hypertension, diabetes and atherosclerosis in chronic renal failure patients undergoing hemodialysis. Int Urol Nephrol, 48, 1168-1170. [CrossRef] [Google Scholar]
- Bassols, J., Ortega, F. J., Moreno-Navarrete, J. M., Peral, B., Ricart, W., Fernandez-Real, J. M. (2009). Study of the proinflammatory role of human differentiated omental adipocytes. J Cell Biochem, 107, 1107-1117. [CrossRef] [PubMed] [Google Scholar]
- Berg, R. D. (1995). Bacterial translocation from the gastrointestinal tract. Trends Microbiol, 3, 149-154. [CrossRef] [PubMed] [Google Scholar]
- Berg, R. D., Wommack, E., Deitch, E. A. (1988). Immunosuppression and intestinal bacterial overgrowth synergistically promote bacterial translocation. Arch Surg, 123, 1359-1364. [CrossRef] [PubMed] [Google Scholar]
- Bloch-Damti, A., Potashnik, R., Gual, P., Le Marchand-Brustel, Y., Tanti, J. F., Rudich, A., Bashan, N. (2006). Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress. Diabetologia, 49, 2463-2473. [CrossRef] [PubMed] [Google Scholar]
- Bouloumié, A., Curat, C. A., Sengenès, C., Lolmède, K., Miranville, A., Busse, R. (2005). Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care, 8, 347-354. [CrossRef] [PubMed] [Google Scholar]
- Burcelin, R., Garidou, L., Pomié, C. (2012). Immuno-microbiota cross and talk : the new paradigm of metabolic diseases. Semin Immunol, 24, 67-74. [CrossRef] [PubMed] [Google Scholar]
- Burcelin, R., Serino, M., Chabo, C., Garidou, L., Pomié, C., Courtney, M., Amar, J., Bouloumié, A. (2013). Metagenome and metabolism : the tissue microbiota hypothesis. Diabetes Obes Metab, 15 Suppl 3, 61-70. [Google Scholar]
- Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmee, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761-1772. [CrossRef] [PubMed] [Google Scholar]
- Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57, 1470-1481. [CrossRef] [PubMed] [Google Scholar]
- Cao, M., Wang, P., Sun, C., He, W., Wang, F. (2013). Amelioration of IFN-gamma and TNF-alpha-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One, 8, e61944. [CrossRef] [PubMed] [Google Scholar]
- Cavallari, J. F., Denou, E., Foley, K. P., Khan, W. I., Schertzer, J. D. (2016). Different Th17 immunity in gut, liver, and adipose tissues during obesity : the role of diet, genetics, and microbes. Gut Microbes, 7, 82-89. [CrossRef] [PubMed] [Google Scholar]
- Chaby, R. (2004). Lipopolysaccharide-binding molecules : transporters, blockers and sensors. Cell Mol Life Sci, 61, 1697-1713. [CrossRef] [PubMed] [Google Scholar]
- Clavel, T., Borrmann, D., Braune, A., Doré, J., Blaut, M. (2006). Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe, 12, 140-147. [CrossRef] [PubMed] [Google Scholar]
- Cousin, B., André, M., Arnaud, E., Pénicaud, L., Casteilla, L. (2003). Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun, 301, 1016-1022. [CrossRef] [PubMed] [Google Scholar]
- Culbreath, C., Tanner, S. M., Yeramilli, V. A., Berryhill, T. F., Lorenz, R. G., Martin, C. A. (2015). Environmental-mediated intestinal homeostasis in neonatal mice. J Surg Res, 198, 494-501. [CrossRef] [PubMed] [Google Scholar]
- D’Hauteville, H., Khan, S., Maskell, D. J., Kussak, A., Weintraub, A., Mathison, J., Ulevitch, R. J., Wuscher, N., Parsot, C., Sansonetti, P. J. (2002). Two msbB genes encoding maximal acylation of lipid A are required for invasive Shigella flexneri to mediate inflammatory rupture and destruction of the intestinal epithelium. J Immunol, 168, 5240-5251. [CrossRef] [PubMed] [Google Scholar]
- DeFuria, J., Belkina, A. C., Jagannathan-Bogdan, M., Snyder-Cappione, J., Carr, J. D., Nersesova, Y. R., Markham, D., Strissel, K. J., Watkins, A. A., Zhu, M., Allen, J., Bouchard, J., Toraldo, G., Jasuja, R., Obin, M. S., McDonnell, M. E., Apovian, C., Denis, G. V., Nikolajczyk, B. S. (2013). B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci USA, 110, 5133-5138. [CrossRef] [Google Scholar]
- Eberl, G. (2012). Development and evolution of RORγt+ cells in a microbe’s world. Immunol Rev, 245, 177-188. [CrossRef] [PubMed] [Google Scholar]
- Eberl, G., Colonna, M., Di Santo, J. P. McKenzie, A. N. (2015). Innate lymphoid cells. Innate lymphoid cells : a new paradigm in immunology. Science, 348, aaa6566. [Google Scholar]
- Everard, A., Geurts, L., Caesar, R., Van Hul, M., Matamoros, S., Duparc, T., Denis, R. G., Cochez, P., Pierard, F., Castel, J., Bindels, L. B., Plovier, H., Robine, S., Muccioli, G. G., Renauld, J. C., Dumoutier, L., Delzenne, N. M., Luquet, S., Backhed, F., Cani, P. D. (2014). Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun, 5, 5648. [CrossRef] [PubMed] [Google Scholar]
- Fernandez-Real, J. M., Broch, M., Richart, C., Vendrell, J., Lopez-Bermejo, A., Ricart, W. (2003). CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. J Clin Endocrinol Metab, 88, 1780-1784. [CrossRef] [PubMed] [Google Scholar]
- Flint, H. J., Duncan, S. H., Scott, K. P., Louis, P. (2007). Interactions and competition within the microbial community of the human côlon : links between diet and health. Environ Microbiol, 9, 1101-1111. [CrossRef] [PubMed] [Google Scholar]
- Garidou, L., Pomié, C., Klopp, P., Waget, A., Charpentier, J., Aloulou, M., Giry, A., Serino, M., Stenman, L., Lahtinen, S., Dray, C., Iacovoni, J. S., Courtney, M., Collet, X., Amar, J., Servant, F., Lelouvier, B., Valet, P., Eberl, G., Fazilleau, N., Douin-Echinard, V., Heymes, C., Burcelin, R. (2015). The Gut Microbiota Regulates Intestinal CD4 T Cells Expressing RORγt+ and Controls Metabolic Disease. Cell Metab, 22, 100-112. [CrossRef] [PubMed] [Google Scholar]
- Ghoshal, S., Witta, J., Zhong, J., de Villiers, W., Eckhardt, E. (2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res, 50, 90-97. [CrossRef] [PubMed] [Google Scholar]
- Gibson, G. R. (1998). Dietary modulation of the human gut microflora using prebiotics. Br J Nutr, 80, S209-212. [PubMed] [Google Scholar]
- Golbus, J. R., Stitziel, N. O., Zhao, W., Xue, C., Farrall, M., McPherson, R., Erdmann, J., Deloukas, P., Watkins, H., Schunkert, H., Samani, N. J., Saleheen, D., Kathiresan, S., Reilly, M. P. (2016). Common and Rare Genetic Variation in CCR2, CCR5, or CX3CR1 and Risk of Atherosclerotic Coronary Heart Disease and Glucometabolic Traits. Circ Cardiovasc Genet, 9, 250-258 [CrossRef] [PubMed] [Google Scholar]
- Grunwald, U., Kruger, C., Schutt, C. (1993). Endotoxin-neutralizing capacity of soluble CD14 is a highly conserved specific function. Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circ Shock, 39, 220-225. [PubMed] [Google Scholar]
- Gupta, H., Dai, L., Datta, G., Garber, D. W., Grenett, H., Li, Y., Mishra, V., Palgunachari, M. N., Handattu, S., Gianturco, S. H., Bradley, W. A., Anantharamaiah, G. M., White, C. R. (2005). Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circ Res, 97, 236-243. [CrossRef] [Google Scholar]
- Hapfelmeier, S., Lawson, M. A., Slack, E., Kirundi, J. K., Stoel, M., Heikenwalder, M., Cahenzli, J., Velykoredko, Y., Balmer, M. L., Endt, K., Geuking, M. B., Curtiss, R., 3rd, McCoy, K. D., Macpherson, A. J. (2010). Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science, 328, 1705-1709. [Google Scholar]
- Harris, H. W., Gosnell, J. E., Kumwenda, Z. L. (2000). The lipemia of sepsis : triglyceride-rich lipoproteins as agents of innate immunity. J Endotoxin Res, 6, 421-430. [PubMed] [Google Scholar]
- Haziot, A., Rong, G. W., Lin, X. Y., Silver, J., Goyert, S. M. (1995). Recombinant soluble CD14 prevents mortality in mice treated with endotoxin (lipopolysaccharide). J Immunol, 154, 6529-6532. [PubMed] [Google Scholar]
- Hepworth, M. R., Monticelli, L. A., Fung, T. C., Ziegler, C. G., Grunberg, S., Sinha, R., Mantegazza, A. R., Ma, H. L., Crawford, A., Angelosanto, J. M., Wherry, E. J., Koni, P. A., Bushman, F. D., Elson, C. O., Eberl, G., Artis, D., Sonnenberg, G. F. (2013). Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature, 498, 113-117. [CrossRef] [PubMed] [Google Scholar]
- Hodin, C. M., Verdam, F. J., Grootjans, J., Rensen, S. S., Verheyen, F. K., Dejong, C. H., Buurman, W. A., Greve, J. W., Lenaerts, K. (2011). Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. J Pathol, 225, 276-284. [CrossRef] [PubMed] [Google Scholar]
- Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860-867. [CrossRef] [PubMed] [Google Scholar]
- Huang, S., Martin, E., Kim, S., Yu, L., Soudais, C., Fremont, D. H., Lantz, O., Hansen, T. H. (2009). MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc Natl Acad Sci USA, 106, 8290-8295. [CrossRef] [Google Scholar]
- Imai, A., Kurihara, Y. (1984). Endogenous infection in mice with streptozotocin-induced diabetes. A feature of bacterial translocation. Can J Microbiol, 30, 1344-1348. [CrossRef] [PubMed] [Google Scholar]
- Jialal, I., Devaraj, S., Bettaieb, A., Haj, F., Adams-Huet, B. (2015). Increased adipose tissue secretion of Fetuin-A, lipopolysaccharide-binding protein and high-mobility group box protein 1 in metabolic syndrome. Atherosclerosis, 241, 130-137. [CrossRef] [PubMed] [Google Scholar]
- Kasravi, F. B., Welch, W. J., Peters-Lideu, C. A., Weisgraber, K. H., Harris, H. W. (2003). Induction of cytokine tolerance in rodent hepatocytes by chylomicron-bound LPS is low-density lipoprotein receptor dependent. Shock, 19, 157-162. [CrossRef] [PubMed] [Google Scholar]
- Kim, M. H., Taparowsky, E. J., Kim, C. H. (2015). Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity, 43, 107-119. [CrossRef] [PubMed] [Google Scholar]
- Kitchens, R. L., Thompson, P. A. (2005). Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J Endotoxin Res, 11, 225-229. [CrossRef] [PubMed] [Google Scholar]
- Kitchens, R. L., Thompson, P. A., Viriyakosol, S., O'Keefe, G. E., Munford, R. S. (2001). Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. J Clin Invest, 108, 485-493. [CrossRef] [PubMed] [Google Scholar]
- Koh, I. H., Liberatore, A. M., Menchaca-Diaz, J. L., Ruiz-Silva, M., Vilela-Oliveira, L., Watanabe, A. Y., Salomao, R., Fagundes-Neto, U., Silva, R. M. (2006). Bacterial translocation, microcirculation injury and sepsis. Endocr Metab Immune Disord Drug Targets, 6, 143-150. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Lassenius, M. I., Pietilainen, K. H., Kaartinen, K., Pussinen, P. J., Syrjanen, J., Forsblom, C., Porsti, I., Rissanen, A., Kaprio, J., Mustonen, J., Groop, P. H., Lehto, M. (2011). Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care, 34, 1809-1815. [CrossRef] [PubMed] [Google Scholar]
- LeChatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J. M., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., Jorgensen, T., Brandslund, I., Nielsen, H. B., Juncker, A. S., Bertalan, M., Levenez, F., Pons, N., Rasmussen, S., Sunagawa, S., Tap, J., Tims, S., Zoetendal, E. G., Brunak, S., Clément, K., Doré, J., Kleerebezem, M., Kristiansen, K., Renault, P., Sicheritz-Ponten, T., de Vos, W. M., Zucker, J. D., Raes, J., Hansen, T., Meta, H. I. T. C., Bork, P., Wang, J., Ehrlich, S. D., Pedersen, O. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541-546. [CrossRef] [PubMed] [Google Scholar]
- Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci USA, 102, 11070-11075. [CrossRef] [Google Scholar]
- Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J. R., Prifti, E., Nielsen, T., Juncker, A. S., Manichanh, C., Chen, B., Zhang, W., Levenez, F., Wang, J., Xu, X., Xiao, L., Liang, S., Zhang, D., Zhang, Z., Chen, W., Zhao, H., Al-Aama, J. Y., Edris, S., Yang, H., Wang, J., Hansen, T., Nielsen, H. B., Brunak, S., Kristiansen, K., Guarner, F., Pedersen, O., Doré, J., Ehrlich, S. D., Meta, H. I. T. C., Bork, P., Wang, J., Meta, H. I. T. C. (2014). An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol, 32, 834-841. [CrossRef] [PubMed] [Google Scholar]
- Lluch, J., Servant, F., Paissé, S., Valle, C., Valière, S., Kuchly, C., Vilchez, G., Donnadieu, C., Courtney, M., Burcelin, R., Amar, J., Bouchez, O., Lelouvier, B. (2015). The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline. PLoS One, 10, e0142334. [CrossRef] [PubMed] [Google Scholar]
- Lu, Y., Loos, R. J. (2013). Obesity genomics : assessing the transferability of susceptibility loci across diverse populations. Genome Med, 5, 55. [CrossRef] [PubMed] [Google Scholar]
- Luche, E., Cousin, B., Garidou, L., Serino, M., Waget, A., Barreau, C., André, M., Valet, P., Courtney, M., Casteilla, L., Burcelin, R. (2013). Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab, 2, 281-291. [CrossRef] [PubMed] [Google Scholar]
- Luck, H., Tsai, S., Chung, J., Clemente-Casares, X., Ghazarian, M., Revelo, X. S., Lei, H., Luk, C. T., Shi, S. Y., Surendra, A., Copeland, J. K., Ahn, J., Prescott, D., Rasmussen, B. A., Chng, M. H., Engleman, E. G., Girardin, S. E., Lam, T. K., Croitoru, K., Dunn, S., Philpott, D. J., Guttman, D. S., Woo, M., Winer, S., Winer, D. A. (2015). Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab, 21, 527-542. [CrossRef] [PubMed] [Google Scholar]
- Lumeng, C. N., Bodzin, J. L., Saltiel, A. R. (2007a). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest, 117, 175-184. [CrossRef] [PubMed] [Google Scholar]
- Lumeng, C. N., Deyoung, S. M., Bodzin, J. L. & Saltiel, A. R. (2007b). Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes, 56, 16-23. [CrossRef] [PubMed] [Google Scholar]
- Magalhaes, I., Pingris, K., Poitou, C., Bessoles, S., Venteclef, N., Kiaf, B., Beaudoin, L., Da Silva, J., Allatif, O., Rossjohn, J., Kjer-Nielsen, L., McCluskey, J., Ledoux, S., Genser, L., Torcivia, A., Soudais, C., Lantz, O., Boitard, C., Aron-Wisnewsky, J., Larger, E., Clément, K., Lehuen, A. (2015). Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest, 125, 1752-1762. [CrossRef] [PubMed] [Google Scholar]
- Mazière, C., Conte, M. A., Dantin, F., Mazière, J. C. (1999). Lipopolysaccharide enhances oxidative modification of low density lipoprotein by copper ions, endothelial and smooth muscle cells. Atherosclerosis, 143, 75-80. [CrossRef] [PubMed] [Google Scholar]
- McKenzie, A. N., Spits, H., Eberl, G. (2014). Innate lymphoid cells in inflammation and immunity. Immunity, 41, 366-374. [CrossRef] [PubMed] [Google Scholar]
- McPhee, J. B., Schertzer, J. D. (2015). Immunometabolism of obesity and diabetes : microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci (Lond), 129, 1083-1096. [CrossRef] [PubMed] [Google Scholar]
- Menendez, A., Willing, B. P., Montero, M., Wlodarska, M., So, C. C., Bhinder, G., Vallance, B. A., Finlay, B. B. (2013). Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell alpha-defensins. J Innate Immun, 5, 39-49. [CrossRef] [PubMed] [Google Scholar]
- Monteiro-Sepulveda, M., Touch, S., Mendes-Sa, C., André, S., Poitou, C., Allatif, O., Cotillard, A., Fohrer-Ting, H., Hubert, E. L., Remark, R., Genser, L., Tordjman, J., Garbin, K., Osinski, C., Sautès-Fridman, C., Leturque, A., Clément, K., Brot-Laroche, E. (2015). Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling. Cell Metab, 22, 113-124. [CrossRef] [PubMed] [Google Scholar]
- Moore, F., Moore, E., Poggetti, R., McAnena, O., Peterson, V., Abernathy, C. (1991). Gut bacterial translocation via the portal vein : a clinical perspective with major torso trauma. J Trauma, 31, 629-636. [CrossRef] [PubMed] [Google Scholar]
- Moreira, A. P., Texeira, T. F., Ferreira, A. B., Peluzio Mdo, C., Alfenas Rde, C. (2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr, 108, 801-809. [CrossRef] [PubMed] [Google Scholar]
- Morel, D. W., DiCorleto, P. E., Chisolm, G. M. (1986). Modulation of endotoxin-induced endothelial cell toxicity by low density lipoprotein. Lab Invest, 55, 419-426. [PubMed] [Google Scholar]
- Moreno-Navarrete, J. M., Ortega, F., Serino, M., Luche, E., Waget, A., Pardo, G., Salvador, J., Ricart, W., Fruhbeck, G., Burcelin, R., Fernandez-Real, J. M. (2012). Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes (Lond), 36, 1442-1449. [CrossRef] [PubMed] [Google Scholar]
- Mortha, A., Chudnovskiy, A., Hashimoto, D., Bogunovic, M., Spencer, S. P., Belkaid, Y., Merad, M. (2014). Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science, 343, 1249288. [CrossRef] [PubMed] [Google Scholar]
- Murphy, K. M. (2013). Transcriptional control of dendritic cell development. Adv Immunol, 120, 239-267. [CrossRef] [PubMed] [Google Scholar]
- Niess, J. H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B. A., Vyas, J. M., Boes, M., Ploegh, H. L., Fox, J. G., Littman, D. R., Reinecker, H. C. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 307, 254-258. [CrossRef] [PubMed] [Google Scholar]
- Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., Yoshimura, K., Kadowaki, T., & Nagai, R. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med, 15, 914-920. [CrossRef] [PubMed] [Google Scholar]
- Ohmura, K., Ishimori, N., Ohmura, Y., Tokuhara, S., Nozawa, A., Horii, S., Andoh, Y., Fujii, S., Iwabuchi, K., Onoe, K., Tsutsui, H. (2010). Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscler Thromb Vasc Biol, 30, 193-199. [CrossRef] [PubMed] [Google Scholar]
- Pabst, O., Cerovic, V., Hornef, M. (2016). Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota. Trends Immunol, 37, 287-296. [CrossRef] [PubMed] [Google Scholar]
- Paissé, S., Valle, C., Servant, F., Courtney, M., Burcelin, R., Amar, J., Lelouvier, B. (2016). Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion, 56, 1138-1147. [CrossRef] [PubMed] [Google Scholar]
- Paulos, C. M., Wrzesinski, C., Kaiser, A., Hinrichs, C. S., Chieppa, M., Cassard, L., Palmer, D. C., Boni, A., Muranski, P., Yu, Z., Gattinoni, L., Antony, P. A., Rosenberg, S. A., Restifo, N. P. (2007). Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest, 117, 2197-2204. [CrossRef] [PubMed] [Google Scholar]
- Pearson, C., Thornton, E. E., McKenzie, B., Schaupp, A. L., Huskens, N., Griseri, T., West, N., Tung, S., Seddon, B. P., Uhlig, H. H., Powrie, F. (2016). ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife, 5, e10066. [PubMed] [Google Scholar]
- Pomié, C., Blasco-Baque, V., Klopp, P., Nicolas, S., Waget, A., Loubières, P., Azalbert, V., Puel, A., Lopez, F., Dray, C., Valet, P., Lelouvier, B., Servant, F., Courtney, M., Amar, J., Burcelin, R., Garidou, L. (2016). Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia. Mol Metab, 5, 392-403. [CrossRef] [PubMed] [Google Scholar]
- Qiao, Y., Sun, J., Ding, Y., Le, G., Shi, Y. (2013). Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol, 97, 1689-1697. [CrossRef] [PubMed] [Google Scholar]
- Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Jian, M., Zhou, Y., Li, Y., Zhang, X., Qin, N., Yang, H., Wang, J., de Vos, W. M., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., Ehrlich, S. D. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59-65. [CrossRef] [PubMed] [Google Scholar]
- Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu, P., Dai, Y., Sun, X., Li, Z., Tang, A., Zhong, S., Li, X., Chen, W., Xu, R., Wang, M., Feng, Q., Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., Sanchez, G., Raes, J., Falony, G., Okuda, S., Almeida, M., Le Chatelier, E., Renault, P., Pons, N., Batto, J. M., Zhang, Z., Chen, H., Yang, R., Zheng, W., Yang, H., Wang, J., Ehrlich, S. D., Nielsen, R., Pedersen, O., Kristiansen, K. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55-60. [CrossRef] [PubMed] [Google Scholar]
- Rensen, P. C., Oosten, M., Bilt, E., Eck, M., Kuiper, J., Berkel, T. J. (1997). Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats In vivo. J Clin Invest, 99, 2438-2445. [CrossRef] [PubMed] [Google Scholar]
- Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P., Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2, 361-367. [CrossRef] [PubMed] [Google Scholar]
- Rogier, E. W., Frantz, A. L., Bruno, M. E., Wedlund, L., Cohen, D. A., Stromberg, A. J., Kaetzel, C. S. (2014). Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA, 111, 3074-3079. [CrossRef] [Google Scholar]
- Sakakibara, A., Furuse, M., Saitou, M., Ando-Akatsuka, Y., Tsukita, S. (1997). Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol, 137, 1393-1401. [CrossRef] [PubMed] [Google Scholar]
- Salerno-Goncalves, R., Rezwan, T., Sztein, M. B. (2014). B cells modulate mucosal associated invariant T cell immune responses. Front Immunol, 4, 511. [CrossRef] [PubMed] [Google Scholar]
- Salzedas-Netto, A. A., Silva, R. M., Martins, J. L., Menchaca-Diaz, J. L., Bugni, G. M., Watanabe, A. Y., Silva, F. J., Fagundes-Neto, U., Morais, M. B., Koh, I. H. (2006). Can bacterial translocation be a beneficial event? Transplant Proc, 38, 1836-1837. [CrossRef] [PubMed] [Google Scholar]
- Schnaitman, C. A., Klena, J. D. (1993). Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev, 57, 655-682. [PubMed] [Google Scholar]
- Schumann, R. R., Leong, S. R., Flaggs, G. W., Gray, P. W., Wright, S. D., Mathison, J. C., Tobias, P. S., Ulevitch, R. J. (1990). Structure and function of lipopolysaccharide binding protein. Science, 249, 1429-1431. [CrossRef] [PubMed] [Google Scholar]
- Schutt, C., Schilling, T., Grunwald, U., Schonfeld, W., Kruger, C. (1992). Endotoxin-neutralizing capacity of soluble CD14. Res Immuno, 143, 71-78. [CrossRef] [Google Scholar]
- Shah, R., O’Neill, S. M., Hinkle, C., Caughey, J., Stephan, S., Lynch, E., Bermingham, K., Lynch, G., Ahima, R. S., Reilly, M. P. (2015). Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice. PLoS One, 10, e0138317. [CrossRef] [PubMed] [Google Scholar]
- Shoelson, S. E., Lee, J., Goldfine, A. B. (2006). Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice. J Clin Invest, 116, 1793-1801. [CrossRef] [PubMed] [Google Scholar]
- Stoidis, C. N., Misiakos, E. P., Patapis, P., Fotiadis, C. I., Spyropoulos, B. G. (2011). Potential benefits of pro- and prebiotics on intestinal mucosal immunity and intestinal barrier in short bowel syndrome. Nutr Res Rev, 24, 21-30. [CrossRef] [PubMed] [Google Scholar]
- Suzuki, T., Itoh, K., Hagiwara, T., Nakayama, H., Honjyo, K., Hirota, Y., Kaneko, T., Suzuki, H. (1996). Inhibition of bacterial translocation from the gastrointestinal tract of mice injected with cyclophosphamide. Curr Microbiol, 33, 78-83. [CrossRef] [PubMed] [Google Scholar]
- Taira, T., Yamaguchi, S., Takahashi, A., Okazaki, Y., Yamaguchi, A., Sakaguchi, H., Chiji, H. (2015). Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J Clin Biochem Nutr, 57, 212-216. [CrossRef] [PubMed] [Google Scholar]
- Tanti, J., Gual, P., Grémeaux, T., Gonzalez, T., Barres, R., Le Marchand-Brustel, Y. (2004). Alteration in insulin action : role of IRS-1 serine phsophorylation in the retroregulation of insulin signalling. Ann Endocrinol, 65, 43-48. [CrossRef] [Google Scholar]
- Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027-1031. [CrossRef] [PubMed] [Google Scholar]
- Turnbaugh, P. J., Backhed, F., Fulton, L., Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3, 213-223. [CrossRef] [PubMed] [Google Scholar]
- van den Hout, M. F., Sluijter, B. J., Santegoets, S. J., van Leeuwen, P. A., van den Tol, M. P., van den Eertwegh, A. J., Scheper, R. J., de Gruijl, T. D. (2016). Local delivery of CpG-B and GM-CSF induces concerted activation of effector and regulatory T cells in the human melanoma sentinel lymph node. Cancer Immunol Immunother, 65, 405-415. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Vergès, B., Duvillard, L., Lagrost, L., Vachoux, C., Garret, C., Bouyer, K., Courtney, M., Pomié, C., Burcelin, R. (2014). Changes in lipoprotein kinetics associated with type 2 diabetes affect the distribution of lipopolysaccharides among lipoproteins. J Clin Endocrinol Metab, 99, E1245-1253. [CrossRef] [PubMed] [Google Scholar]
- Vora, P., Youdim, A., Thomas, L. S., Fukata, M., Tesfay, S. Y., Lukasek, K., Michelsen, K. S., Wada, A., Hirayama, T., Arditi, M., Abreu, M. T. (2004). Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol, 173, 5398-5405. [CrossRef] [PubMed] [Google Scholar]
- Vreugdenhil, A. C., Rousseau, C. H., Hartung, T., Greve, J. W., van't Veer, C., Buurman, W. A. (2003). Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol, 170, 1399-1405. [CrossRef] [PubMed] [Google Scholar]
- Vrieze, A., Van Nood, E., Holleman, F., Salojarvi, J., Kootte, R. S., Bartelsman, J. F., Dallinga-Thie, G. M., Ackermans, M. T., Serlie, M. J., Oozeer, R., Derrien, M., Druesne, A., Van Hylckama Vlieg, J. E., Bloks, V. W., Groen, A. K., Heilig, H. G., Zoetendal, E. G., Stroes, E. S., de Vos, W. M., Hoekstra, J. B., Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143, 913-916 e917. [CrossRef] [PubMed] [Google Scholar]
- Wang, L., Wang, J., Jin, Y., Gao, H., Lin, X. (2014). Oral administration of all-trans retinoic acid suppresses experimental periodontitis by modulating the Th17/Treg imbalance. J Periodontol, 85, 740-750. [CrossRef] [PubMed] [Google Scholar]
- Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R. L., Ferrante, A. W., Jr. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest, 116, 115-124. [CrossRef] [PubMed] [Google Scholar]
- Winer, S., Chan, Y., Paltser, G., Truong, D., Tsui, H., Bahrami, J., Dorfman, R., Wang, Y., Zielenski, J., Mastronardi, F., Maezawa, Y., Drucker, D. J., Engleman, E., Winer, D., Dosch, H. M. (2009a). Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med, 15, 921-929. [CrossRef] [PubMed] [Google Scholar]
- Winer, S., Paltser, G., Chan, Y., Tsui, H., Engleman, E., Winer, D., Dosch, H. M. (2009b). Obesity predisposes to Th17 bias. Eur J Immunol, 39, 2629-2635. [CrossRef] [PubMed] [Google Scholar]
- Winer, D. A., Winer, S., Shen, L., Wadia, P. P., Yantha, J., Paltser, G., Tsui, H., Wu, P., Davidson, M. G., Alonso, M. N., Leong, H. X., Glassford, A., Caimol, M., Kenkel, J. A., Tedder, T. F., McLaughlin, T., Miklos, D. B., Dosch, H. M., Engleman, E. G. (2011). B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med, 17, 610-617. [CrossRef] [PubMed] [Google Scholar]
- Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., Mathison, J. C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249, 1431-1433. [CrossRef] [PubMed] [Google Scholar]
- Yan, Y. J., Li, Y., Lou, B., Wu, M. P. (2006). Beneficial effects of ApoA-I on LPS-induced acute lung injury and endotoxemia in mice. Life Sci, 79, 210-215. [CrossRef] [PubMed] [Google Scholar]
- Yilmaz, D., Guncu, G. N., Kononen, E., Baris, E., Caglayan, F., Gursoy, U. K. (2015). Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in Gingiva of Diabetics with Periodontitis. Immunobiology, 220, 1219-1226. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.