Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 211, Numéro 1, 2017
Page(s) 69 - 82
Section Apport de la Génétique et de l’Épigénétique en Psychiatrie
DOI https://doi.org/10.1051/jbio/2017015
Publié en ligne 6 juillet 2017
  • Abdolmaleky H.M., Cheng K., Faraone S.V., Wilcox M., Glatt S.J., Gao F., Smith C.L., Shafa R., Aeali B., Carnevale J., Pan H., Papageorgis P., Ponte J.F., Sivaraman V., Tsuang M.T., Thiagalingam S. (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet, 15, 3132–3145. [CrossRef] [PubMed] [Google Scholar]
  • Aberg K.A., McClay J.L., Nerella S., Clark S., Kumar G., Chen W., Khachane A.N., Xie L., Hudson A., Gao G., Harada A., Hultman C.M., Sullivan P.F., Magnusson P.K.E., van den Oord E.J.C.G. (2014) Methylome-wide association study of schizophrenia : identifying blood biomarker signatures of environmental insults. JAMA Psychiatry, 71, 255–264. [CrossRef] [PubMed] [Google Scholar]
  • Akbarian S. (2010) Epigenetics of schizophrenia. Curr Top Behav Neurosci, 4, 611–628. [CrossRef] [PubMed] [Google Scholar]
  • Alexandre C., Chaumette B., Martinez G., Christa L., Dupont J.-M., Kebir O., Gaillard R., Amado I., Krebs M.-O. (2015) Paradoxical Improvement of Schizophrenic Symptoms by a Dopaminergic Agonist : An Example of Personalized Psychiatry in a Copy Number Variation-Carrying Patient. Biol Psychiatry, 10.1016/j.biopsych.2015.09.017. [Google Scholar]
  • Bestor T.H., Edwards J.R., Boulard M. (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci USA, 112, 6796–6799. [CrossRef] [Google Scholar]
  • Beveridge N.J., Cairns M.J. (2012) MicroRNA dysregulation in schizophrenia. Neurobiol Dis, 46, 263–271. [CrossRef] [PubMed] [Google Scholar]
  • Biedermann F., Fleischhacker W.W. (2016) Psychotic disorders in DSM-5 and ICD-11. CNS Spectr, 21, 349–354. [CrossRef] [PubMed] [Google Scholar]
  • Bonnot O., Cohen D., Thuilleaux D., Consoli A., Cabal S., Tauber M. (2016) Psychotropic treatments in Prader-Willi syndrome : a critical review of published literature. Eur J Pediatr, 175, 9–18. [CrossRef] [PubMed] [Google Scholar]
  • Carrard A., Salzmann A., Malafosse A., Karege F., (2011) Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord, 132, 450–453. [CrossRef] [PubMed] [Google Scholar]
  • Castellani C.A., Laufer B.I., Melka M.G., Diehl E.J., O'Reilly R.L., Singh S.M., (2015) DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med Genomics, 8, 17. [CrossRef] [PubMed] [Google Scholar]
  • Chase K.A., Gavin D.P., Guidotti A., Sharma R.P., (2013) Histone methylation at H3K9 : evidence for a restrictive epigenome in schizophrenia. Schizophr Res, 149, 15–20. [CrossRef] [PubMed] [Google Scholar]
  • Chaumette B. Identification de facteurs biologiques de la transition psychotique. (2016) Thèse de neurobiologie soutenue à l’Université Paris Descartes. Available at : https://www.researchgate.net/publication/308787435. Accessed April 20, 2017. [Google Scholar]
  • Chaumette B., Kebir O., Mam Lam Fook C., Bourgin J., Godsil B.P., Gaillard R., Jay T.M., Krebs M.-O., (2016) [Stress and psychotic transition : A literature review]. L’Encéphale, 42, 367–373 [Google Scholar]
  • Chong H.Y., Teoh S.L., Wu DB-C,Kotirum S., Chiou C.-F., Chaiyakunapruk N., (2016) Global economic burden of schizophrenia : a systematic review. Neuropsychiatr Dis Treat, 12, 357–373. [PubMed] [Google Scholar]
  • CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium, Psychosis Endophenotypes International Consortium. (2017) Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet, 49, 27–35. [Google Scholar]
  • Collip D., van Winkel R., Peerbooms O., Lataster T., Thewissen V., Lardinois M., Drukker M., Rutten B.P.F., van Os J., Myin-Germeys I., (2011) COMT Val158Met-stress interaction in psychosis : role of background psychosis risk. CNS Neurosci Ther, 17, 612–619. [CrossRef] [PubMed] [Google Scholar]
  • Cross-Disorder Group of the Psychiatric Genomics Consortium, Genetic Risk Outcome of Psychosis (GROUP) Consortium. (2013) Identification of risk loci with shared effects on five major psychiatric disorders : a genome-wide analysis. Lancet, 381, 1371–1379. [Google Scholar]
  • Darville H., Poulet A., Rodet-Amsellem F., Chatrousse L., Pernelle J., Boissart C., Héron D., Nava C., Perrier A., Jarrige M., Cogé F., Millan M.J., Bourgeron T., Peschanski M., Delorme R., Benchoua A., (2016) Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput Medication Screening in Autism : A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome. EBioMedicine, 9, 293–305. [CrossRef] [PubMed] [Google Scholar]
  • Denli A.M., Tops B.B.J., Plasterk R.H.A., Ketting R.F., Hannon G.J., (2004) Processing of primary microRNAs by the Microprocessor complex. Nature, 432, 231–235. [CrossRef] [PubMed] [Google Scholar]
  • European Network of National Networks studying Gene-Environment Interactions in Schizophrenia (EU-GEI) (2014) Identifying gene-environment interactions in schizophrenia : contemporary challenges for integrated, large-scale investigations. Schizophr Bull, 40, 729–736. [Google Scholar]
  • Fernandes B.S., Williams L.M., Steiner J., Leboyer M., Carvalho A.F., Berk M., (2017) The new field of “precision psychiatry”. BMC Med, 15, 80. [CrossRef] [PubMed] [Google Scholar]
  • Folsom D.P., Hawthorne W., Lindamer L., Gilmer T., Bailey A., Golshan S., Garcia P., Unützer J., Hough R., Jeste D.V., (2005) Prevalence and risk factors for homelessness and utilization of mental health services among 10,340 patients with serious mental illness in a large public mental health system. Am J Psychiatry, 162, 370–376. [CrossRef] [PubMed] [Google Scholar]
  • Geschwind D.H., Flint J., (2015) Genetics and genomics of psychiatric disease. Science, 349, 1489–1494. [CrossRef] [PubMed] [Google Scholar]
  • Giegling I., Hosak L., Mössner R., Serretti A., Bellivier F., Claes S., Collier D.A., Corrales A., DeLisi L.E., Gallo C., Gill M., Kennedy J.L., Leboyer M., Maier W., Marquez M., Massat I., Mors O., Muglia P., Nöthen M.M., Ospina-Duque J., Owen M.J., Propping P., Shi Y., St Clair D., Thibaut F., Cichon S., Mendlewicz J., O'Donovan M.C., Rujescu D. (2017) Genetics of schizophrenia : A consensus paper of the WFSBP Task Force on Genetics. World J Biol Psychiatry, 1–14. 10.1080/15622975.2016.1268715. [Google Scholar]
  • Girard M., Pocklington A.J., Kavanagh D.H., Williams H.J., Dwyer S., Gormley P., Georgieva L., Rees E., Palta P., Ruderfer D.M., Carrera N., Humphreys I., Johnson J.S., Roussos P., Barker D.D., Banks E., Milanova V., Grant S.G., Hannon E., Rose S.A., Chambert K., Mahajan M., Scolnick E.M., Moran J.L., Kirov G., Palotie A., McCarroll S.A., Holmans P., Sklar P., Owen M.J., Purcell S.M., O'Donovan M.C., (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature, 506, 179–184. [CrossRef] [PubMed] [Google Scholar]
  • Girard S.L., Gauthier J., Noreau A., Xiong L., Zhou S., Jouan L., Dionne-Laporte A., Spiegelman D., Henrion E., Diallo O., Thibodeau P., Bachand I., Bao J.Y.J., Tong A.H.Y., Lin C.-H., Millet B., Jaafari N., Joober R., Dion P.A., Lok S., Krebs M.-O., Rouleau G.A., (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet, 43, 860–863. [CrossRef] [PubMed] [Google Scholar]
  • Grayson D.R., (2010) Schizophrenia and the epigenetic hypothesis. Epigenomics, 2, 341–344. [CrossRef] [PubMed] [Google Scholar]
  • Guidotti A., Auta J., Davis J.M., Di-Giorgi-Gerevini V., Dwivedi Y., Grayson D.R., Impagnatiello F., Pandey G., Pesold C., Sharma R., Uzunov D., Costa E., DiGiorgi Gerevini V., (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder : a postmortem brain study. Arch Gen Psychiatry, 57, 1061–1069. [CrossRef] [PubMed] [Google Scholar]
  • Han J., Sarkar A., Gage F.H., (2015) MIR137 : big impacts from small changes. Nat Neurosci, 18, 931–933. [CrossRef] [PubMed] [Google Scholar]
  • Harrison G., Hopper K., Craig T., Laska E., Siegel C., Wanderling J., Dube K.C., Ganev K., Giel R., Heiden W an D., Holmberg S.K., Janca A., Lee P.W.H., León C.A., Malhotra S., Marsella A.J., Nakane Y., Sartorius N., Shen Y., Skoda C., Thara R., Tsirkin S.J., Varma V.K., Walsh D., Wiersma D., (2001) Recovery from psychotic illness : a 15- and 25-year international follow-up study. Br J Psychiatry, 178, 506–517. [CrossRef] [PubMed] [Google Scholar]
  • Higgins J., Gore R., Gutkind D., Mednick S.A., Parnas J., Schulsinger F., Cannon T.D., (1997) Effects of child-rearing by schizophrenic mothers : a 25-year follow-up. Acta Psychiatr Scand, 96, 402–404. [CrossRef] [PubMed] [Google Scholar]
  • Hoeffding L.K., Trabjerg B.B., Olsen L., Mazin W., Sparsø T., Vangkilde A., Mortensen P.B., Pedersen C.B., Werge T., (2017) Risk of Psychiatric Disorders Among Individuals With the 22q11.2 Deletion or Duplication : A Danish Nationwide, Register-Based Study. JAMA Psychiatry, 74, 282–290. [CrossRef] [PubMed] [Google Scholar]
  • Homann O.R., Misura K., Lamas E., Sandrock R.W., Nelson P., McDonough S.I., DeLisi L.E., (2016) Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol Psychiatry, 21, 1690–1695. [CrossRef] [PubMed] [Google Scholar]
  • Hor K., Taylor M., (2010) Suicide and schizophrenia : a systematic review of rates and risk factors. J Psychopharmacol, 24, 81–90. [CrossRef] [PubMed] [Google Scholar]
  • Huang H.-S., Matevossian A., Whittle C., Kim S.Y., Schumacher A., Baker S.P., Akbarian S., (2007) Prefrontal Dysfunction in Schizophrenia Involves Mixed-Lineage Leukemia 1-Regulated Histone Methylation at GABAergic Gene Promoters. J Neurosci, 27, 11254–11262. [CrossRef] [PubMed] [Google Scholar]
  • Issidorides M.R., Stefanis C.N., Varsou E., Katsorchis T., (1975) Altered chromatin ultrastructure in neutrophils of schizophrenics. Nature, 258, 612–614. [CrossRef] [PubMed] [Google Scholar]
  • Kahn R.S., Sommer I.E., Murray R.M., Meyer-Lindenberg A., Weinberger D.R., Cannon T.D., O'Donovan M., Correll C.U., Kane J.M., van Os J., Insel T.R., (2015) Nat Rev Dis Primers, 1, 15067. [CrossRef] [PubMed] [Google Scholar]
  • Kebir O., Chaumette B., Fatjó-Vilas M., Ambalavanan A., Ramoz N., Xiong L., Mouaffak F., Millet B., Jaafari N., DeLisi L.E., Levinson D., Joober R., Fañanás L., Rouleau G., Dubertret C., Krebs M.-O., (2014) Family-based association study of common variants, rare mutation study and epistatic interaction detection in HDAC genes in schizophrenia. Schizophr Res, 160, 97–103. [CrossRef] [PubMed] [Google Scholar]
  • Kebir O., Chaumette B., Rivollier F., Miozzo F., Lemieux Perreault L.P., Barhdadi A., Provost S., Plaze M., Bourgin J., ICAAR team, Gaillard R., Mezger V., Dubé M.-P., Krebs M.-O., (2017) Methylomic changes during conversion to psychosis. Mol Psychiatry, 22, 512–518. [CrossRef] [PubMed] [Google Scholar]
  • Kleefstra T., Schenck A., Kramer J.M., van Bokhoven H., (2014) The genetics of cognitive epigenetics. Neuropharmacology, 80, 83–94. [CrossRef] [PubMed] [Google Scholar]
  • Krebs M.O., Bellon A., Mainguy G., Jay T.M., Frieling H., (2009) One-carbon metabolism and schizophrenia : current challenges and future directions. Trends Mol Med, 15, 562–570. [CrossRef] [PubMed] [Google Scholar]
  • Krebs M.-O. (2015) Signes précoces des schizophrénies. Dunod, Paris. Available at : https://www.dunod.com/sciences-humaines-et-sociales/signes-precoces-schizophrenies. Accessed December 13, 2015. [Google Scholar]
  • Kringlen E., Cramer G., (1989) Offspring of monozygotic twins discordant for schizophrenia. Arch Gen Psychiatry, 46, 873–877. [CrossRef] [PubMed] [Google Scholar]
  • Laird P.W., (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet, 11, 191–203. [CrossRef] [PubMed] [Google Scholar]
  • Laurens K.R., Luo L., Matheson S.L., Carr V.J., Raudino A., Harris F., Green M.J., (2015) Common or distinct pathways to psychosis? A systematic review of evidence from prospective studies for developmental risk factors and antecedents of the schizophrenia spectrum disorders and affective psychoses. BMC Psychiatry, 15, 205. [CrossRef] [PubMed] [Google Scholar]
  • Marwaha S., Johnson S., (2004) Schizophrenia and employment - a review. Psychiatr Epidemiol, 39, 337–349. [CrossRef] [Google Scholar]
  • Matrisciano F., Tueting P., Dalal I., Kadriu B., Grayson D.R., Davis J.M., Nicoletti F., Guidotti A., (2013) Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology, 68, 184–194. [CrossRef] [PubMed] [Google Scholar]
  • Merico D., Costain G., Butcher N.J., Warnica W., Ogura L., Alfred S.E., Brzustowicz L.M., Bassett A.S., (2014) MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome. Front Neurol, 5, 238. [CrossRef] [PubMed] [Google Scholar]
  • Mill J., Tang T., Kaminsky Z., Khare T., Yazdanpanah S., Bouchard L., Jia P., Assadzadeh A., Flanagan J., Schumacher A., Wang S.-C., Petronis A., (2008) Epigenomic Profiling Reveals DNA-Methylation Changes Associated with Major Psychosis. Am J Hum Genet, 82, 696–711. [CrossRef] [PubMed] [Google Scholar]
  • Millan M.J., (2013) An epigenetic framework for neurodevelopmental disorders : from pathogenesis to potential therapy. Neuropharmacology, 68, 2–82. [CrossRef] [PubMed] [Google Scholar]
  • Modinos G., Iyegbe C., Prata D., Rivera M., Kempton M.J., Valmaggia L.R., Sham P.C., van Os J., McGuire P., (2013) Molecular genetic gene-environment studies using candidate genes in schizophrenia : A systematic review. Schizophr Res, 150, 356–365. [CrossRef] [PubMed] [Google Scholar]
  • Nishioka M., Bundo M., Koike S., Takizawa R., Kakiuchi C., Araki T., Kasai K., Iwamoto K., (2013) Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. J Hum Genet, 58, 91–97. [CrossRef] [PubMed] [Google Scholar]
  • Niwa M., Jaaro-Peled H., Tankou S., Seshadri S., Hikida T., Matsumoto Y., Cascella N.G., Kano S., Ozaki N., Nabeshima T., Sawa A., (2013) Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science, 339, 335–339. [CrossRef] [PubMed] [Google Scholar]
  • Numata S., Kinoshita M., Tajima A., Nishi A., Imoto I., Ohmori T., (2015) Evaluation of an association between plasma total homocysteine and schizophrenia by a Mendelian randomization analysis. BMC Med Genet, 16, 54. [CrossRef] [PubMed] [Google Scholar]
  • Peerbooms O.L.J., van Os J., Drukker M., Kenis G., Hoogveld L., MTHFR in Psychiatry Group, de Hert M., Delespaul P., van Winkel R., Rutten B.P.F., (2011) Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder : evidence for a common genetic vulnerability? Brain Behav Immun, 25, 1530–1543. [CrossRef] [PubMed] [Google Scholar]
  • Petronis A., Gottesman I.I., Kan P., Kennedy J.L., Basile V.S., Paterson A.D., Popendikyte V., (2003) Monozygotic twins exhibit numerous epigenetic differences : clues to twin discordance? Schizophr Bull, 29, 169–178. [CrossRef] [PubMed] [Google Scholar]
  • Petronis A., (2004) The origin of schizophrenia : genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry, 55, 965–970. [CrossRef] [PubMed] [Google Scholar]
  • Power R.A., Verweij K.J.H., Zuhair M., Montgomery G.W., Henders A.K., Heath A.C., Madden P.A., Medland S.E., Wray N.R., Martin N.G., (2014) Genetic predisposition to schizophrenia associated with increased use of cannabis. Mol Psychiatry, 19, 1201–1204. [CrossRef] [PubMed] [Google Scholar]
  • Purcell S.M., Moran J.L., Fromer M., Ruderfer D., Solovieff N., Roussos P., O'Dushlaine C., Chambert K., Bergen S.E., Kähler A., Duncan L., Stahl E., Genovese G., Fernández E., Collins M.O., Komiyama N.H., Choudhary J.S., Magnusson P.K.E., Banks E., Shakir K., Garimella K., Fennell T., DePristo M., Grant S.G.N., Haggarty S.J., Gabriel S., Scolnick E.M., Lander E.S., Hultman C.M., Sullivan P.F., McCarroll S.A., Sklar P., (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 506, 185–190. [CrossRef] [PubMed] [Google Scholar]
  • Ray-Gallet D., Gérard A., Polo S., Almouzni G., (2005) Variations sur le thème du ¡code histone¿. MS Médecine Sci, 21, 384–389. [Google Scholar]
  • Rees E., Kirov G., Sanders A., Walters J.T.R., Chambert K.D., Shi J., Szatkiewicz J., O'Dushlaine C., Richards A.L., Green E.K., Jones I., Davies G., Legge S.E., Moran J.L., Pato C., Pato M., Genovese G., Levinson D., Duan J., Moy W., Göring H.H.H., Morris D., Cormican P., Kendler K.S., O'Neill F.A., Riley B., Gill M., Corvin A., Wellcome Trust Case Control Consortium, Craddock N., Sklar P., Hultman C., Sullivan P.F., Gejman P.V., McCarroll S.A., O'Donovan M.C., Owen M.J., (2014) Evidence that duplications of 22q11.2 protect against schizophrenia. Mol Psychiatry, 19, 37–40. [CrossRef] [PubMed] [Google Scholar]
  • Regier D.A., Kuhl E.A., Kupfer D.J., (2013) The DSM-5 : Classification and criteria changes. World Psychiatry, 12, 92–98. [CrossRef] [PubMed] [Google Scholar]
  • Rice D.P. (1999) The economic impact of schizophrenia. J Clin Psychiatry, 60 Suppl 1, 4-6; discussion 28-30. [Google Scholar]
  • Rivollier F., Chaumette B., Bendjemaa N., Chayet M., Millet B., Jaafari N., Barhdadi A., Lemieux Perreault L.-P., Provost S., Dubé M.-P., Gaillard R., Krebs M.-O., Kebir O., (2017) Methylomic changes in individuals with psychosis, prenatally exposed to endocrine disrupting compounds : Lessons from diethylstilbestrol. PloS One, 12, e0174783. [CrossRef] [PubMed] [Google Scholar]
  • Rivollier F., Lotersztajn L., Chaumette B., Krebs M.-O., Kebir O., (2014) [Epigenetics of schizophrenia : a review]. L’Encéphale, 40, 380–386. [Google Scholar]
  • Robinson D.G., Woerner M.G., McMeniman M., Mendelowitz A., Bilder R.M., (2004) Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. Am J Psychiatry, 161, 473–479. [CrossRef] [PubMed] [Google Scholar]
  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427. [Google Scholar]
  • Serret S., Thümmler S., Dor E., Vesperini S., Santos A., Askenazy F., (2015) Lithium as a rescue therapy for regression and catatonia features in two SHANK3 patients with autism spectrum disorder : case reports. BMC Psychiatry, 15, 107. [CrossRef] [PubMed] [Google Scholar]
  • Shields J., Gottesman I.I., (1972) Cross-national diagnosis of schizophrenia in twins. The heritability and specificity of schizophrenia. Arch Gen Psychiatry, 27, 725–730. [CrossRef] [PubMed] [Google Scholar]
  • Singh T., Kurki M.I., Curtis D., Purcell S.M., Crooks L., McRae J., Suvisaari J., Chheda H., Blackwood D., Breen G., Pietiläinen O., Gerety S.S., Ayub M., Blyth M., Cole T., Collier D., Coomber E.L., Craddock N., Daly M.J., Danesh J., DiForti M., Foster A., Freimer N.B., Geschwind D., Johnstone M., Joss S., Kirov G., Körkkö J., Kuismin O., Holmans P., Hultman C.M., Iyegbe C., Lönnqvist J., Männikkö M., McCarroll S.A., McGuffin P., McIntosh A.M., McQuillin A., Moilanen J.S., Moore C., Murray R.M., Newbury-Ecob R., Ouwehand W., Paunio T., Prigmore E., Rees E., Roberts D., Sambrook J., Sklar P., Clair D.S., Veijola J., Walters J.T.R., Williams H., Swedish Schizophrenia Study, INTERVAL Study, DDD Study, UK10 K Consortium, Sullivan P.F., Hurles M.E., O'Donovan M.C., Palotie A., Owen M.J., Barrett J.C. (2016) Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci, 10.1038/nn.4267. [Google Scholar]
  • Sun E., Shi Y., (2015) MicroRNAs : Small molecules with big roles in neurodevelopment and diseases. Exp Neurol, 268, 46–53. [CrossRef] [PubMed] [Google Scholar]
  • Teroganova N., Girshkin L., Suter C.M., Green M.J., (2016) DNA methylation in peripheral tissue of schizophrenia and bipolar disorder : a systematic review. BMC Genet, 17, 27. [CrossRef] [PubMed] [Google Scholar]
  • Tiihonen J., Lönnqvist J., Wahlbeck K., Klaukka T., Niskanen L., Tanskanen A., Haukka J., (2009) 11-year follow-up of mortality in patients with schizophrenia : a population-based cohort study (FIN11 study). Lancet, 374, 620–627. [CrossRef] [PubMed] [Google Scholar]
  • vanOs J., Kenis G., Rutten B.P.F., (2010) The environment and schizophrenia. Nature, 468, 203–212. [CrossRef] [PubMed] [Google Scholar]
  • Veldic M., Caruncho H.J., Liu W.S., Davis J., Satta R., Grayson D.R., Guidotti A., Costa E., (2004) DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci USA, 101, 348–353. [CrossRef] [Google Scholar]
  • Waddington C. (1957) Strategy of the Genes. Allen and Unwin, London. [Google Scholar]
  • Walton E., Hass J., Liu J., Roffman J.L., Bernardoni F., Roessner V., Kirsch M., Schackert G., Calhoun V., Ehrlich S., (2016) Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research. Schizophr Bull, 42, 406–414. [CrossRef] [PubMed] [Google Scholar]
  • Wolffe A.P., Matzke M.A., (1999) Epigenetics : regulation through repression. Science, 286, 481–486. [CrossRef] [PubMed] [Google Scholar]
  • Wray N.R., Lee S.H., Mehta D., Vinkhuyzen A.A.E., Dudbridge F., Middeldorp C.M., (2014) Research review : Polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry, 55, 1068–1087. [CrossRef] [PubMed] [Google Scholar]
  • Zheutlin A.B., Jeffries C.D., Perkins D.O., Chung Y., Chekroud A.M., Addington J., Bearden C.E., Cadenhead K.S., Cornblatt B.A., Mathalon D.H., McGlashan T.H., Seidman L.J., Walker E.F., Woods S.W., Tsuang M., Cannon T.D. (2017) The Role of microRNA Expression in Cortical Development During Conversion to Psychosis. Neuropsychopharmacol, 10.1038/npp.2017.34. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.