Accès gratuit
Biologie Aujourd'hui
Volume 211, Numéro 3, 2017
Page(s) 215 - 222
Section Forces mécaniques et morphogenèse des tissus
Publié en ligne 7 février 2018
  • Abe, I., Tsujino, A., Hara, Y., Ichimura, H., Ochiai, N. (2002). Paranodal demyelination by gradual nerve stretch can be repaired by elongation of internodes. Acta Neuropathol, 104, 505–512. [PubMed] [Google Scholar]
  • Abe, I., Ochiai, N., Ichimura, H., Tsujino, A., Sun, J., Hara, Y. (2004). Internodes can nearly double in length with gradual elongation of the adult rat sciatic nerve. J Orthop Res, 22, 571–577. [CrossRef] [PubMed] [Google Scholar]
  • Baraban, M., Anselme, I., Schneider-Maunoury, S., Giudicelli, F. (2013). Zebrafish embryonic neurons transport messenger RNA to axons and growth cones in vivo. J Neurosci, 33, 15726–15734. [CrossRef] [PubMed] [Google Scholar]
  • Bosveld, F., Bonnet, I., Guirao, B., Tlili, S., Wang, Z., Petitalot, A., Marchand, R., Bardet, P.-L., Marcq, P., Graner, F., Bellaïche, Y. (2012). Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science, 336, 724–727. [CrossRef] [PubMed] [Google Scholar]
  • Bray, D. (1970). Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci USA, 65, 905–910. [CrossRef] [Google Scholar]
  • Bray, D. (1984). Axonal growth in response to experimentally applied mechanical tension. Dev Biol, 102, 379–389. [CrossRef] [PubMed] [Google Scholar]
  • Bray, D., Money, N.P., Harold, F.M., Bamburg, J.R. (1991). Responses of growth cones to changes in osmolality of the surrounding medium. J Cell Sci, 98, 507–515. [PubMed] [Google Scholar]
  • Breau, M.A., Bonnet, I., Stoufflet, J., Xie, J., De Castro, S., Schneider-Maunoury, S. (2017). Extrinsic mechanical forces mediate retrograde axon extension in a developing neuronal circuit. Nat Commun, 8, 282. [CrossRef] [PubMed] [Google Scholar]
  • Bueno, F.R., Shah, S.B. (2008). Implications of tensile loading for the tissue engineering of nerves. Tissue Eng Part B Rev, 14, 219–233. [CrossRef] [Google Scholar]
  • Buettner, H.M., Pittman, R.N., Ivins, J.K. (1994). A model of neurite extension across regions of nonpermissive substrate − Simulations based on experimental-measurement of growth cone motility and filopodial dynamics. Dev Biol, 163, 407–422. [CrossRef] [PubMed] [Google Scholar]
  • Butko, M.T., Yang, J., Geng, Y., Kim, H.J., Jeon, N.L., Shu, X., Mackey, M.R., Ellisman, M.H., Tsien, R.Y., Lin, M.Z. (2012). Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy. Nat Neurosci, 15, 1742–1751. [CrossRef] [PubMed] [Google Scholar]
  • Chada, S., Lamoureux, P., Buxbaum, R.E., Heidemann, S.R. (1997). Cytomechanics of neurite outgrowth from chick brain neurons. J Cell Sci, 110, 1179–1186. [PubMed] [Google Scholar]
  • Chen, H.I., Jgamadze, D., Serruya, M.D., Cullen, D.K., Wolf, J.A., Smith, D.H. (2016). Neural substrate expansion for the restoration of brain function. Front Syst Neurosci, 10, 1. [PubMed] [Google Scholar]
  • Cheng, J.P.X., Mendoza-Topaz, C., Howard, G., Chadwick, J., Shvets, E., Cowburn, A.S., Dunmore, B.J., Crosby, A., Morrell, N.W., Nichols, B.J. (2015). Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol, 211, 53–61. [CrossRef] [PubMed] [Google Scholar]
  • Conde, C., Caceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci, 10, 319–332. [CrossRef] [PubMed] [Google Scholar]
  • Cullen, D.K., Tang-Schomer, M.D., Struzyna, L.A., Patel, A.R., Johnson, V.E., Wolf, J.A., Smith, D.H. (2012). Microtissue engineered constructs with living axons for targeted nervous system reconstruction. Tissue Eng Part A, 18, 2280–2289. [CrossRef] [PubMed] [Google Scholar]
  • D'Este, E., Kamin, D., Goettfert, F., El-Hady, A., Hell, S.W. (2015). STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep, 10, 1246–1251. [CrossRef] [PubMed] [Google Scholar]
  • D'Este, E., Kamin, D., Velte, C., Goettfert, F., Simons, M., Hell, S.W. (2016). Subcortical cytoskeleton periodicity throughout the nervous system. Sci Rep, 6, 22741. DOI: 10.1038/srep22741. [CrossRef] [PubMed] [Google Scholar]
  • Dennerll, T.J., Joshi, H.C., Steel, V.L., Buxbaum, R.E., Heidemann, S.R. (1988). Tension and compression in the cytoskeleton of Pc-12 neurites: II − Quantitative measurements. J Cell Biol, 107, 665–674. [CrossRef] [PubMed] [Google Scholar]
  • Dennerll, T.J., Lamoureux, P., Buxbaum, R.E., Heidemann, S.R. (1989). The cytomechanics of axonal elongation and retraction. J Cell Biol, 109, 3073–3083. [CrossRef] [PubMed] [Google Scholar]
  • Dent, E.W., Gertler, F.B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron, 40, 209–227. [CrossRef] [PubMed] [Google Scholar]
  • Echarri, A., Del Pozo, M.A. (2015). Caveolae − mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci, 128, 2747–2758. [CrossRef] [PubMed] [Google Scholar]
  • Franze, K., Gerdelmann, J., Weick, M., Betz, T., Pawlizak, S., Lakadamyali, M., Bayer, J., Rillich, K., Goegler, M., Lu, Y.-B., Reichenbach, A., Janmey, P., Käs, J. (2009). Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys J, 97, 1883–1890. [CrossRef] [PubMed] [Google Scholar]
  • Gallo, G., Letourneau, P.C. (2000). Neurotrophins and the dynamic regulation of the neuronal cytoskeleton. J Neurobiol, 44, 159–173. [CrossRef] [PubMed] [Google Scholar]
  • Hammarlund, M., Jorgensen, E.M., Bastiani, M.J. (2007). Axons break in animals lacking beta-spectrin. J Cell Biol, 176, 269–275. [CrossRef] [PubMed] [Google Scholar]
  • Harrison, R.G. (1935). The Croonian Lecture − On the origin and development of the nervous system studied by the methods of experimental embryology. Proc R Soc B-Biol Sci, 118, 155–196. [CrossRef] [Google Scholar]
  • He, J., Zhou, R., Wu, Z., Carrasco, M.A., Kurshan, P.T., Farley, J.E., Simon, D.J., Wang, G., Han, B., Hao, J., Heller, E., Freeman, M.R., Shen, K., Maniatis, T., Tessier-Lavigne, M., Zhuang, X. (2016). Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci USA, 113, 6029–6034. [CrossRef] [Google Scholar]
  • Heidemann, S.R., Lamoureux, P., Buxbaum, R.E. (1995). Cytomechanics of axonal development. Cell Biochem Biophys, 27, 135–155. [CrossRef] [PubMed] [Google Scholar]
  • Heidemann, S.R., Bray, D. (2015). Tension-driven axon assembly: a possible mechanism. Front Cell Neurosci, 9, 316. [CrossRef] [PubMed] [Google Scholar]
  • Huang, J.H., Zager, E.L., Zhang, J., Groff, R.F., Pfister, B.J., Cohen, A.S., Grady, M.S., Maloney-Wilensky, E., Smith, D.H. (2008). Harvested human neurons engineered as live nervous tissue constructs: implications for transplantation. J Neurosurg, 108, 343–347. [CrossRef] [PubMed] [Google Scholar]
  • Huang, J.H., Cullen, D.K., Browne, K.D., Groff, R., Zhang, J., Pfister, B.J., Zager, E.L., Smith, D.H. (2009). Long-term survival and integration of transplanted engineered nervous tissue constructs promotes peripheral nerve regeneration. Tissue Eng Part A, 15, 1677–1685. [CrossRef] [PubMed] [Google Scholar]
  • Iwata, A., Browne, K.D., Pfister, B.J., Gruner, J.A., Smith, D.H. (2006). Long-term survival and outgrowth of mechanically engineered nervous tissue constructs implanted into spinal cord lesions. Tissue Eng, 12, 101–110. [CrossRef] [PubMed] [Google Scholar]
  • Jacques-Fricke, B.T., Seow, Y.Q., Gottlieb, P.A., Sachs, F., Gomez, T.M. (2006). Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J Neurosci, 26, 5656–5664. [CrossRef] [PubMed] [Google Scholar]
  • Kerstein, P.C., Jacques-Fricke, B.T., Rengifo, J., Mogen, B.J., Williams, J.C., Gottlieb, P.A., Sachs, F., Gomez, T.M. (2013). Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth. J Neurosci, 33, 273–285. [CrossRef] [PubMed] [Google Scholar]
  • Kolodkin, A.L., Tessier-Lavigne, M. (2011). Mechanisms and molecules of neuronal wiring: A primer. Cold Spring Harb Perspect Biol, 3, DOI: 10.1101/cshperspect.a001727. [Google Scholar]
  • Koser, D.E., Thompson, A.J., Foster, S.K., Dwivedy, A., Pillai, E.K., Sheridan, G.K., Svoboda, H., Viana, M., Costa, L.D.F., Guck, J., Holt, C.E., Franze, K. (2016). Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci, 19, 1592–1598. [CrossRef] [PubMed] [Google Scholar]
  • Krieg, M., Dunn, A.R., Goodman, M.B. (2014). Mechanical control of the sense of touch by beta-spectrin. Nat Cell Biol, 16, 224–233. [CrossRef] [PubMed] [Google Scholar]
  • Krieg, M., Dunn, A.R., Goodman, M.B. (2015). Mechanical systems biology of C.elegans touch sensation. Bioessays, 37, 335–344. [CrossRef] [PubMed] [Google Scholar]
  • Krieg, M., Stuehmer, J., Cueva, J.G., Fetter, R., Spilker, K., Cremers, D., Shen, K., Dunn, A.R., Goodman, M.B. (2017). Genetic defects in beta-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. eLife, 6, DOI: 10.7554/eLife.20172. [Google Scholar]
  • Lakhina, V., Marcaccio, C.L., Shao, X., Lush, M.E., Jain, R.A., Fujimoto, E., Bonkowsky, J.L., Granato, M., Raper, J.A. (2012). Netrin/DCC signaling guides olfactory sensory axons to their correct location in the olfactory bulb. J Neurosci, 32, 4440–4456. [CrossRef] [PubMed] [Google Scholar]
  • Lamoureux, P., Buxbaum, R.E., Heidemann, S.R. (1989). Direct evidence that growth cones pull. Nature, 340, 156–162. [CrossRef] [PubMed] [Google Scholar]
  • Lamoureux, P., Zheng, J., Buxbaum, R.E., Heidemann, S.R. (1992). A cytomechanical investigation of neurite growth on different culture surfaces. J Cell Biol, 118, 655–661. [CrossRef] [PubMed] [Google Scholar]
  • Lamoureux, P., Heidemann, S.R., Martzke, N.R., Miller, K.E. (2010). Growth and elongation within and along the axon. Dev Neurobiol, 70, 135–149. [CrossRef] [PubMed] [Google Scholar]
  • Lee, J., Ishihara, A., Oxford, G., Johnson, B., Jacobson, K. (1999). Regulation of cell movement is mediated by stretch-activated calcium channels. Nature, 400, 382–386. [CrossRef] [PubMed] [Google Scholar]
  • Lim, Y.-W., Lo, H.P., Ferguson, C., Martel, N., Giacomotto, J., Gomez, G.A., Yap, A.S., Hall, T.E., Parton, R.G. (2017). Caveolae protect notochord cells against catastrophic mechanical failure during development. Curr Biol, 27, 1968–1981. [CrossRef] [PubMed] [Google Scholar]
  • Lo, H.P., Nixon, S.J., Hall, T.E., Cowling, B.S., Ferguson, C., Morgan, G.P., Schieber, N.L., Fernandez-Rojo, M.A., Bastiani, M., Floetenmeyer, M., Martel, N., Laporte, J., Pilch, P.F., Parton, R.G. (2015). The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol, 210, 833–849. [CrossRef] [PubMed] [Google Scholar]
  • Love, J.M., Bober, B.G., Orozco, E., White, A.T., Bremner, S.N., Lovering, R.M., Schenk, S., Shah, S.B. (2017). mTOR regulates peripheral nerve response to tensile strain. J Neurophysiol, 117, 2075–2084. [CrossRef] [PubMed] [Google Scholar]
  • Loverde, J.R., Tolentino, R.E., Pfister, B.J. (2011). Axon stretch growth: The mechanotransduction of neuronal growth. J Vis Exp, 54, DOI: 10.3791/2753. [Google Scholar]
  • Loverde, J.R., Pfister, B.J. (2015). Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology. Front Cell Neurosci, 9, 308. [CrossRef] [PubMed] [Google Scholar]
  • Lowery, L.A., van Vactor, D. (2009). The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol, 10, 332–343. [CrossRef] [PubMed] [Google Scholar]
  • Miller, K.E., Sheetz, M.P. (2006). Direct evidence for coherent low velocity axonal transport of mitochondria. J Cell Biol, 173, 373–381. [CrossRef] [PubMed] [Google Scholar]
  • Miller, K.E., Heidemann, S.R. (2008). What is slow axonal transport? Exp Cell Res, 314, 1981–1990. [CrossRef] [PubMed] [Google Scholar]
  • Miyasaka, N., Sato, Y., Yeo, S.Y., Hutson, L.D., Chien, C.B., Okamoto, H., Yoshihara, Y. (2005). Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system. Development, 132, 1283–1293. [CrossRef] [PubMed] [Google Scholar]
  • Miyasaka, N., Knaut, H., Yoshihara, Y. (2007). Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system. Development, 134, 2459–2468. [CrossRef] [PubMed] [Google Scholar]
  • O'Toole, M., Miller, K.E. (2011). The role of stretching in slow axonal transport. Biophys J, 100, 351–360. [CrossRef] [PubMed] [Google Scholar]
  • O'Toole, M., Lamoureux, P., Miller, K.E. (2008). A physical model of axonal elongation: Force, viscosity, and adhesions govern the mode of outgrowth. Biophys J, 94, 2610–2620. [CrossRef] [PubMed] [Google Scholar]
  • O'Toole, M., Lamoureux, P., Miller, K.E. (2015). Measurement of subcellular force generation in neurons. Biophys J, 108, 1027–1037. [CrossRef] [PubMed] [Google Scholar]
  • Pfister, B.J., Weihs, T.P., Betenbaugh, M., Bao, G. (2003). An in vitro uniaxial stretch model for axonal injury. Ann Biomed Eng, 31, 589–598. [CrossRef] [PubMed] [Google Scholar]
  • Pfister, B.J., Iwata, A., Meaney, D.F., Smith, D.H. (2004). Extreme stretch growth of integrated axons. J Neurosci, 24, 7978–7983. [CrossRef] [PubMed] [Google Scholar]
  • Pfister, B.J., Bonislawski, D.P., Smith, D.H., Cohen, A.S. (2006a). Stretch-grown axons retain the ability to transmit active electrical signals. FEBS Lett, 580, 3525–3531. [CrossRef] [Google Scholar]
  • Pfister, B.J., Iwata, A., Taylor, A.G., Wolf, J.A., Meaney, D.F., Smith, D.H. (2006b). Development of transplantable nervous tissue constructs comprised of stretch-grown axons. J Neurosci Methods, 153, 95–103. [CrossRef] [Google Scholar]
  • Pfister, B.J., Huang, J.H., Kameswaran, N., Zager, E.L., Smith, D.H. (2007). Neural engineering to produce in vitro nerve constructs and neurointerface. Neurosurgery, 60, 137–141. [CrossRef] [PubMed] [Google Scholar]
  • Polackwich, R.J., Koch, D., McAllister, R., Geller, H.M., Urbach, J.S. (2015). Traction force and tension fluctuations in growing axons. Front Cell Neurosci, 9, 417. [CrossRef] [PubMed] [Google Scholar]
  • Purohit, P.K., Smith, D.H. (2016). A model for stretch growth of neurons. J Biomech, 49, 3934–3942. [CrossRef] [PubMed] [Google Scholar]
  • Rajagopalan, J., Tofangchi, A., Saif, M.T.A. (2010). Drosophila neurons actively regulate axonal tension in vivo. Biophys J, 99, 3208–3215. [CrossRef] [PubMed] [Google Scholar]
  • Ranade, S.S., Syeda, R., Patapoutian, A. (2015). Mechanically activated ion channels. Neuron, 87, 1162–1179. [CrossRef] [PubMed] [Google Scholar]
  • Rauzi, M., Verant, P., Lecuit, T., Lenne, P.-F. (2008). Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol, 10, 1401–1457. [CrossRef] [PubMed] [Google Scholar]
  • Rauzi, M., Lenne, P.-F., Lecuit, T. (2010). Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature, 468, 1110–U1515. [CrossRef] [PubMed] [Google Scholar]
  • Rossi, F., Gianola, S., Corvetti, L. (2007). Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol, 81, 1–28. [CrossRef] [PubMed] [Google Scholar]
  • Shibasaki, K., Murayama, N., Ono, K., Ishizaki, Y., Tominaga, M. (2010). TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci, 30, 4601–4612. [CrossRef] [PubMed] [Google Scholar]
  • Siechen, S., Yang, S., Chiba, A., Saif, T. (2009). Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc Natl Acad Sci USA, 106, 12611–12616. [CrossRef] [Google Scholar]
  • Sinha, B., Koester, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., Stan, R.V., Butler-Browne, G., Vedie, B., Johannes, L., Morone, N., Parton, R.G., Raposo, G., Sens, P., Lamaze, C., Nassoy, P. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144, 402–413. [CrossRef] [PubMed] [Google Scholar]
  • Smit, D., Fouquet, C., Pincet, F., Zapotocky, M., Trembleau, A. (2017). Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering. eLife, 6, DOI: 10.7554/eLife.19907. [Google Scholar]
  • Smith, D.H. (2009). Stretch growth of integrated axon tracts: extremes and exploitations. Prog Neurobiol, 89, 231–239. [Google Scholar]
  • Smith, D.H., Wolf, J.A., Meaney, D.F. (2001). A new strategy to produce sustained growth of central nervous system axons: Continuous mechanical tension. Tissue Eng, 7, 131–139. [CrossRef] [PubMed] [Google Scholar]
  • Struzyna, L.A., Wolf, J.A., Mietus, C.J., Adewole, D.O., Chen, H.I., Smith, D.H., Cullen, D.K. (2015). Rebuilding brain circuitry with living micro-tissue engineered neural networks. Tissue Eng Part A, 21, 2744–2756. [CrossRef] [PubMed] [Google Scholar]
  • Sugimura, K., Lenne, P.-F., Graner, F. (2016). Measuring forces and stresses in situ in living tissues. Development, 143, 186–196. [CrossRef] [PubMed] [Google Scholar]
  • Suter, D.M., Miller, K.E. (2011). The emerging role of forces in axonal elongation. Prog Neurobiol, 94, 91–101. [CrossRef] [PubMed] [Google Scholar]
  • Weiss, P. (1941). Nerve pattern: the mechanics of nerve growth. Growth (Suppl Third Growth Symp), 5, 163–203. [Google Scholar]
  • Xu, K., Zhong, G., Zhuang, X. (2013). Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science, 339, 452–456. [CrossRef] [PubMed] [Google Scholar]
  • Yamada, T., Yoshimura, H., Inaguma, A., Ozawa T. (2011). Visualization of nonengineered single mRNAs in living cells using genetically encoded fluorescent proteins. Anal Chem, 83, 5708–5714. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, H., Labouesse, M. (2012). Signalling through mechanical inputs − a coordinated process. J Cell Sci, 125, 3039–3049. [CrossRef] [PubMed] [Google Scholar]
  • Zheng, J., Lamoureux, P., Santiago, V., Dennerll, T., Buxbaum, R.E., Heidemann, S.R. (1991). Tensile regulation of axonal elongation and initiation. J Neurosci, 11, 1117–1125. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.