Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 211, Numéro 3, 2017
|
|
---|---|---|
Page(s) | 207 - 213 | |
Section | Génétique et reproduction | |
DOI | https://doi.org/10.1051/jbio/2017032 | |
Publié en ligne | 7 février 2018 |
- Baltimore D., Berg P., Botchan M., Carroll D., Charo RA., Church G., Corn JE., Daley GQ., Doudna JA., Fenner M., Greely HT., Jinek M., Martin GS., Penhoet E., Puck J., Sternberg SH., Weissman JS., Yamamoto KR. (2015). A prudent path forward for genomic engineering and germline gene modification. Science, 348, 36-38. [CrossRef] [PubMed] [Google Scholar]
- Chapman KM., Medrano GA., Jaichander P., Chaudhary J., Waits AE., Nobrega MA., Hotaling JM., Ober C., Hamra FK. (2015). Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Rep, 10, 1828-1835. [CrossRef] [PubMed] [Google Scholar]
- Crispo M., Mulet AP., Tesson L., Barrera N., Cuadro F., dos Santos-Neto PC., Nguyen TH., Crénéguy A., Brusselle L., Anegón I., Menchaca A. (2015). Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One, 10, e0136690. [CrossRef] [PubMed] [Google Scholar]
- Cyranoski D. (2016). CRISPR gene editing tested in a person. Nature, 539, 479. [CrossRef] [PubMed] [Google Scholar]
- Dimond R. (2015). Social and ethical issues in mitochondrial donation. Br Med Bull, 115, 173-182. [CrossRef] [PubMed] [Google Scholar]
- Doudna JA., Charpentier E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096. [CrossRef] [PubMed] [Google Scholar]
- Guo R., Wan Y., Xu D., Cui L., Deng M., Zhang G., Jia R., Zhou W., Wang Z., Deng K., Huang M., Wang F., Zhang Y. (2016). Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep, 6, 29855. [CrossRef] [PubMed] [Google Scholar]
- Hashimoto M., Takemoto T. (2015). Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep, 5, 11315. Erratum in: Sci Rep, 2015, 5, 12658. [Google Scholar]
- Honda A., Hirose M., Sankai T., Yasmin L., Yuzawa K., Honsho K., Izu H., Iguchi A., Ikawa M., Ogura A. (2015). Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Exp Anim, 64, 31-37. [Google Scholar]
- Jinek M., Chylinski K., Fonfara .I, Hauer M., Doudna JA., Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821. [CrossRef] [PubMed] [Google Scholar]
- Jordan B. (2015). Thérapie génique germinale, le retour ? Med Sci (Paris), 31, 690-693. [Google Scholar]
- Kang X., He W., Huang Y., Yu Q., Chen Y., Gao X., Sun X., Fan Y. (2016). Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet, 33, 581-588. [CrossRef] [PubMed] [Google Scholar]
- Kou Z., Wu Q., Kou X., Yin C., Wang H., Zuo Z., Zhuo Y., Chen A., Gao S., Wang X. (2015). CRISPR/Cas9-mediated genome engineering of the ferret. Cell Res, 25, 1372-1375. [CrossRef] [PubMed] [Google Scholar]
- Lander ES. (2015). Brave new genome. N Engl J Med, 373, 5-8. [CrossRef] [PubMed] [Google Scholar]
- Lanphier E., Urnov F., Haecker SE., Werner M., Smolenski J. (2015). Don't edit the human germ line. Nature, 519, 410-411. [CrossRef] [PubMed] [Google Scholar]
- Ledford H. (2015). CRISPR, the disruptor. Nature, 522, 20-24. [CrossRef] [PubMed] [Google Scholar]
- Liang P., Xu Y., Zhang X., Ding C., Huang R., Zhang Z., Lv J., Xie X., Chen Y., Li Y., Sun Y., Bai Y., Songyang Z., Ma W., Zhou C., Huang J. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell, 6, 363-372. [CrossRef] [PubMed] [Google Scholar]
- Ménoret S., De Cian A., Tesson L., Rémy S., Usal C., Boulé JB., Boix C., Fontanière S., Crénéguy A., Nguyen TH., Brusselle L., Thinard R., Gauguier D., Concordet JP., Cherifi Y., Fraichard A., Giovannangeli C., Anegon I. (2015). Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins. Sci Rep, 5, 14410. [Google Scholar]
- Midic U., Hung PH., Vincent KA., Goheen B., Schupp PG., Chen DD., Bauer DE., VandeVoort CA., Latham KE. (2017). Quantitative assessment of timing, efficiency, specificity, and genetic mosaicism of CRISPR/Cas9 mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum Mol Genet, 26, 2678-2689. [CrossRef] [PubMed] [Google Scholar]
- Mizuno S., Dinh TT., Kato K., Mizuno-Iijima S., Tanimoto Y., Daitoku Y., Hoshino Y., Ikawa M., Takahashi S., Sugiyama F., Yagami K. (2014). Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm Genome, 25, 327-334. [CrossRef] [PubMed] [Google Scholar]
- Mulder CL., Zheng Y., Jan SZ., Struijk RB., Repping S., Hamer G., van Pelt AM. (2016). Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update, 22, 561-573. [CrossRef] [PubMed] [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. (2017). Human Genome Editing: Science, Ethics, and Governance. Washington, DC, The National Academies Press. DOI: 10.17226/24623. [Google Scholar]
- Niu Y., Shen B., Cui Y., Chen Y., Wang J., Wang L., Kang Y., Zhao X., Si W., Li W., Xiang AP., Zhou J., Guo X., Bi Y., Si C., Hu B., Dong G., Wang H., Zhou Z., Li T., Tan T., Pu X., Wang F., Ji S., Zhou Q., Huang X., Ji W., Sha J. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156, 836-843. [CrossRef] [PubMed] [Google Scholar]
- Petersen B., Frenzel, A, Lucas-Hahn A., Herrmann D., Hassel P., Klein S., Ziegler M., Hadeler KG., Niemann H. (2016). Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation, 23, 338-346. [CrossRef] [PubMed] [Google Scholar]
- Plaza Reyes A., Lanner F. (2017). Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development, 144, 1-3. [Google Scholar]
- Qin W., Dion SL., Kutny PM., Zhang Y., Cheng AW., Jillette NL., Malhotra A., Geurts AM., Chen YG., Wang H. (2015). Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics, 200, 423-430. [CrossRef] [PubMed] [Google Scholar]
- Sato T., Sakuma T., Yokonishi T., Katagiri K., Kamimura S., Ogonuki N., Ogura A., Yamamoto T., Ogawa T. (2015). Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem Cell Reports, 5, 75-82. [CrossRef] [PubMed] [Google Scholar]
- Slaymaker IM., Gao L., Zetsche B., Scott DA., Yan WX., Zhang F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84-88. [CrossRef] [PubMed] [Google Scholar]
- Suzuki T., Asami M., Perry AC. (2014). Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Sci Rep, 4, 7621. [CrossRef] [PubMed] [Google Scholar]
- Tang L., Zeng Y., Du H., Gong M., Peng J., Zhang B., Lei M., Zhao F., Wang W., Li X., Liu J. (2017). CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics, 292, 525-533. [CrossRef] [PubMed] [Google Scholar]
- Traxler EA., Yao Y., Wang YD., Woodard KJ., Kurita R., Nakamura Y., Hughes JR., Hardison RC., Blobel GA., Li C., Weiss MJ. (2016). A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med, 22, 987-990. [CrossRef] [PubMed] [Google Scholar]
- Wang Y., Du Y., Shen B., Zhou X., Li J., Liu Y., Wang J., Zhou J., Hu B., Kang N., Gao J., Yu L., Huang X., Wei H. (2015a). Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep, 5, 8256. [CrossRef] [Google Scholar]
- Wang X., Yu H., Lei A., Zhou J., Zeng W., Zhu H., Dong Z., Niu Y., Shi B., Cai B., Liu J., Huang S., Yan H., Zhao X., Zhou G., He X., Chen X., Yang Y., Jiang Y., Shi L., Tian X., Wang Y., Ma B., Huang X., Qu L., Chen Y. (2015b). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep, 5, 13878. [CrossRef] [Google Scholar]
- Whitworth KM., Lee K., Benne JA., Beaton BP., Spate LD., Murphy SL., Samuel MS., Mao J., O'Gorman C., Walters EM., Murphy CN., Driver J., Mileham A., McLaren D., Wells KD., Prather RS. (2014). Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod, 91, 78. [CrossRef] [PubMed] [Google Scholar]
- Wu Y., Liang D., Wang Y., Bai M., Tang W., Bao S., Yan Z., Li D., Li J. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13, 659-662. [CrossRef] [PubMed] [Google Scholar]
- Wu Y., Zhou H., Fan X., Zhang Y., Zhang M., Wang Y., Xie Z., Bai M., Yin Q., Liang D., Tang W., Liao J., Zhou C., Liu W., Zhu P., Guo H., Pan H., Wu C., Shi H., Wu L., Tang F., Li J. (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 25, 67-79. [CrossRef] [PubMed] [Google Scholar]
- Yin C., Zhang T., Qu X., Zhang Y., Putatunda R., Xiao X., Li F., Xiao W., Zhao H., Dai S., Qin X., Mo X., Young WB., Khalili K., Hu W. (2017). In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther, 25, 1168-1186. [CrossRef] [PubMed] [Google Scholar]
- Zetsche B., Gootenberg JS., Abudayyeh OO., Slaymaker IM., Makarova. KS, Essletzbichler P., Volz SE., Joung J., van der Oost J., Regev A., Koonin EV., Zhang F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759-771. [Google Scholar]
- Zou Q., Wang X., Liu Y., Ouyang Z., Long H., Wei S., Xin J., Zhao B., Lai S., Shen J., Ni Q., Yang H., Zhong H., Li L., Hu M., Zhang Q., Zhou Z., He J., Yan Q., Fan N., Zhao Y., Liu Z., Guo L., Huang J., Zhang G., Ying J., Lai L., Gao X. (2015). Generation of gene-target dogs using CRISPR/Cas9 system. J Mol Cell Biol, 7, 580-583. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.