Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 212, Numéro 3-4, 2018
Page(s) 137 - 145
DOI https://doi.org/10.1051/jbio/2019006
Publié en ligne 11 avril 2019
  • Achee N.L., Grieco J.P., Vatandoost H., Seixas G., Pinto J., Lee Ching N.G., Martins A.J., Juntarajumnong W., Corbel V., Gouagna L.C., David J.P., Logan J., Orsborne J., Maroi E., Devine G.J., Vontas J. (2019). Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis , 13, e0006822. [CrossRef] [PubMed] [Google Scholar]
  • Adkisson P., Tumlinson J., Knipling E.F. (2003). 1909-2000: A biological memoir. Biograph Mem , 83, 3-15. [Google Scholar]
  • Benedict M.Q., Robinson A.S. (2003). The first release of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol , 19, 343-355. [Google Scholar]
  • Bhatt S., Weiss D.J., Cameron E., Bisanzio D., Mappin B., Dalrymple U., Battle K.E., Moyes C.L., Henry A., Eckhoff P.A., Wenger E.A., Briët O., Penny M.A., Smith T.A., Bennett A., Yukich J., Eisele T.P., Griffin J.T., Fergus C.A., Lynch M., Lindgren F., Cohen J.M., Murray C.L.J., Smith D.L., Hay S.I., Cibulskis R.E., Gething P.W. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature , 526, 207-211. [CrossRef] [PubMed] [Google Scholar]
  • Bourtzis K., Lees R.S., Hendrichs J., Vreysen M.J.B. (2016). More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop , 157, 115-130. [Google Scholar]
  • Bouyer J., Lefrançois T. (2014). Boosting the sterile insect technique to control mosquitoes. Trends Parasitol , 30, 271-273. [CrossRef] [PubMed] [Google Scholar]
  • Brelsfoard C.L., St Clair W., Dobson S.L. (2009). Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasit Vectors , 2, 38. [CrossRef] [Google Scholar]
  • Burt A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci , 270, 921-928. [CrossRef] [PubMed] [Google Scholar]
  • Camargo S. (1967). History of Aedes aegypti eradication in the Americas. Bull Org Mond Santé , 36, 602. [Google Scholar]
  • Caputo B., Lenco A., Cianci D., Pombi M., Petrarca V., Baseggio A., Devine G.J., della Torre A. (2012). The “Auto-Dissemination” approach: A novel concept to fight Aedes albopictus in urban areas. PLoS Negl Trop Dis , 6, e1793. [CrossRef] [PubMed] [Google Scholar]
  • Caragata E.P., Dutra H.L.C., Moreira L.A. (2016). Exploiting intimate relationships: Controlling mosquito-transmitted disease with Wolbachia. Trends Parasitol , 32, 207-218. [CrossRef] [PubMed] [Google Scholar]
  • Carnevale P., Robert V. (Eds), Les anophèles : biologie, transmission du plasmodium et lutte antivectorielle, IRD Éditions, Marseille, 2009, 391 p. [CrossRef] [Google Scholar]
  • Carvalho D.O., McKemey A.R., Garziera L., Lacroix R., Donnelly C.A., Alphey L., Malavasi A., Capurro M.L. (2015). Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis , 9, e0003864. [CrossRef] [PubMed] [Google Scholar]
  • Catteruccia F., Nolan T., Loukeris T.G., Blass C., Savakis C., Kafatos F.C., Crisanti A. (2000). Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature , 405, 959-962. [CrossRef] [PubMed] [Google Scholar]
  • Comité scientifique du HCB. Avis du Comité scientifique du Haut Conseil des Biotechnologies concernant l’utilisation de moustiques génétiquement modifiés dans le cadre de la lutte antivectorielle en réponse à la saisine du 12 octobre 2015 (réf. HCB-2017.06.07), Haut Conseil des Biotechnologies, Paris, France, 2017, 150 p., disponible sur http://www.hautconseildesbiotechnologies.fr. [Google Scholar]
  • Devine G.J., Perea E.Z., Killeen G.F., Stancil J.D., Clark S.J. (2009). Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc Natl Acad Sci USA , 106, 11530-11534. [CrossRef] [Google Scholar]
  • Duvallet G., Fontenille D., Robert V. (Eds). Entomologie médicale et vétérinaire, IRD Éditions, Marseille, Quae, Paris, 2017, 687 p. [CrossRef] [Google Scholar]
  • Enkerlin W., Gutierrez-Ruelas J.M., Cortes A.V., Roldan E.C., Midgarden D., Lira E., Lopez J.L.Z., Hendrichs J., Liedo P., Arriaga F.J.T. (2015). Area freedom in Mexico from Mediterranean fruit fly (Diptera: Tephritidae): A review of over 30 years of successful containment program using an integrated area-wide SIT approach. Fla Entomol , 98, 665-681. [CrossRef] [Google Scholar]
  • Failloux A.B. (2019). Les moustiques vecteurs d’arbovirus : une histoire sans fin. Biol Aujourd’hui , 212. [Google Scholar]
  • Flores S., Campos S., Villasenor A., Valle A., Enkerlin W., Toledo J., Liedo P., Montoya P. (2013). Sterile males of Ceratitis capitata (Diptera: Tephritidae) as disseminators of Beauvaria bassiana conidia for IPM strategies. Biocontrol Sci Technol , 23, 1186-1198. [CrossRef] [Google Scholar]
  • Fontenille D., Simard F. (2004). Unravelling complexities in human malaria transmission dynamics in Africa through a comprehensive knowledge of vector populations. Comp Immunol Microbiol Infect Dis , 27, 357-375. [CrossRef] [PubMed] [Google Scholar]
  • Fontenille D., Lagneau C., Lecollinet V., Lefait-Robin R., Setbon M., Tirel B., Yebakima A. (Eds.), La lutte antivectorielle en France, 2013, IRD Éditions, Marseille, 533 p. [Google Scholar]
  • Gantz V.M., Jasinskiene N., Tatarenkova O., Fazekas A., Macias V.M., Bier E., James A.A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA , 112, e6736-e6743. [CrossRef] [Google Scholar]
  • Grossman G.L., Rafferty C.S., Clayton J.R., Stevens T.K., Mukabayire O., Benedict M.Q. (2001). Germline transformation of the malaria vecor, Anopheles gambiae, with the piggyback transposable element. Insect Mol Biol , 10, 597-604. [CrossRef] [PubMed] [Google Scholar]
  • Hammond A.M., Galizi R., Kyrou K., Simoni A., Siniscalchi C., Katsanos D., Gribble M., Baker D., Marois E., Russell S., Burt A., Windbichler N., Crisanti A., Nolan T. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria vector Anopheles gambiae. Nat Biotechnol , 34, 78-83. [CrossRef] [PubMed] [Google Scholar]
  • Hammond A.M., Kyrou K., Bruttini M., North A., Galizi R., Karlsson X., Kranjc N., Carpi F.M., D’Aurizio R., Crisanti A., Nolan T. (2017). The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet , 13, e1007039. [CrossRef] [PubMed] [Google Scholar]
  • Hemingway J., Hawkes N.J., McCarroll L., Ranson H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol , 34, 653-665. [Google Scholar]
  • Hemingway J., Ranson H., Magill A., Kolaczinski J., Fornadel C., Gimnig J., Coetzee M., Simard F., Dabiré K.R., Kerah Hinzoumbe C., Pickett J., Schellenberg D., Gething P., Hoppé M., Hamon N. (2016). Averting a malaria disaster: Will insecticide resistance derail malaria control? Lancet , 387, 1785-1788. [CrossRef] [PubMed] [Google Scholar]
  • Hoffmann A.A., Iturbe-Ormaetxe I., Callahan A.G., Phillips B., Billington K., Axford J.K., Montgomery B., Turelli A.P., O’Neil S.L. (2014). Stability of wMel Wolbachia following invasion into Aedes aegypti populations. PLoS Negl Trop Dis , 8, e3115. [CrossRef] [PubMed] [Google Scholar]
  • Hoffmann A.A., Montgomery B.L., Popovici J., Iturbe-Ormaetxe I., Johnson P.H., Muzzi F., Greenfield M., Durkan M., Leong Y.S., Dong Y., Cook H., Axford J., Callahan A.G., Kenny N., Omodei C., McGraw E.A., Ryan P.A., Ritchie S.A., Turelli M., O’Neil S.L. (2011). Successful establishment of Wolbachia in Aedes aegypti populations to suppress dengue transmission. Nature , 476, 454-457. [CrossRef] [PubMed] [Google Scholar]
  • Hughes G.L., Rasgon J.L. (2014). Transinfection: A method to investigate Wolbachia-host interactions and control arthropod-borne diseases. Insect Mol Biol , 23, 141-151. [CrossRef] [PubMed] [Google Scholar]
  • Jasinskiene N., Coates C.J., Benedict M.Q., Cornel A.J., Rafferty C.S., James A.A., Collins F.H. (1998). Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA , 95, 3743-3747. [CrossRef] [Google Scholar]
  • Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J., Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 337, 816-821. [CrossRef] [PubMed] [Google Scholar]
  • Kistler K., Vosshall L.B., Matthews B.J. (2015). Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Reports , 11, 51-60. [CrossRef] [PubMed] [Google Scholar]
  • Kyrou K., Hammond A.M., Galizi R., Kranjc N., Burt A., Beaghton A.K., Nolan T., Crisanti A. (2018). A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol , 36, 1062-1066. [CrossRef] [PubMed] [Google Scholar]
  • Lapied B., Pennetier C., Apaire-Marchais V., Licznar P., Corbel V. (2009). Innovative applications for insect viruses : Towards insecticide sensitization. Trends Biotechnol , 27, 190-198. [CrossRef] [PubMed] [Google Scholar]
  • Lees R.S., Gilles J.R.L., Hendrichs J., Vreysen M.J.B., Bourtzis K. (2015). Back to the future: The sterile insect technique against mosquito disease vectors. Curr Opin Insect Science , 10, 156-162. [Google Scholar]
  • Moreira L.A., Iturbe-Ormaetxe I., Jeffery J.A., Lu G., Pyke A.T., Hedges L.M., Rocha B.C., Hall-Mendelin S., Day A., Riegler M., Hugo L.E., Johnson K.N., Kay B.H., McGraw E.A., van den Hurk A.F., Ryan P.A., O’Neill S.L. (2009). A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell , 139, 1268-1278. [CrossRef] [PubMed] [Google Scholar]
  • Moyes C.L., Vontas J., Martins A.J., Ng L.C., Koou S.Y., Dusfour I., Raghavendra K., Pinto J., Corbel V., David J-P., Weetman D. (2017). Contemporary status of insecticide resistance in the major Aedes vectors of arbovirus infecting humans. PLoS Negl Trop Dis , 11, e0005625. [CrossRef] [PubMed] [Google Scholar]
  • PAHO – Pan-American Health Organization. (1997). The feasibility of eradicating Aedes aeypti in the Americas. Rev Panam Salud Publica , 1, 381-388. [CrossRef] [PubMed] [Google Scholar]
  • Phuc H.K., Andreasen M.H., Burton R.S., Vass C., Epton M.J., Pape G., Fu G.L., Condon K.C., Scaife S., Donnelly C.A., Coleman P.G., White-Cooper H., Alphey L. (2007). Late-acting dominant lethal genetic systems and mosquito control. BMC Biol , 5, 11. [CrossRef] [PubMed] [Google Scholar]
  • Pombi M., Modiano D., Corbellini G., Malaria eradication in Italy: The story of a first success, in: B. Roche, H. Broutin, F. Simard (Eds), Ecology and evolution of infectious diseases: Pathogen control and public health management in low-income countries, Oxford University Press, Oxford, UK, 2018, pp. 200-216. [Google Scholar]
  • Robert V., Fontenille D., Simard F. (2008). Introduction aux vecteurs et aux maladies à transmission vectorielle. Epidémiol Santé Anim , 54, 1-11. [Google Scholar]
  • Roiz D., Wilson A.L., Scott T.W., Fonseca D.M., Jourdain F., Müller P., Velayudhan R., Corbel V. (2018). Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis , 12, e0006845. [CrossRef] [PubMed] [Google Scholar]
  • Severo, O.P., Eradication of the Aedes aegypti Mosquito from the Americas Yellow fever, a symposium in commemoration of Carlos Juan Finlay, Paper 6, 1955, Available from http://jdc.jefferson.edu/yellow_fever_symposium/6. [Google Scholar]
  • Sicard M., Dittmer J., Greve P., Bouchon D., Braquart-Varnier C. (2014). A host as an ecosystem: Wolbachia coping with environmental constraints. Environ Microbiol , 16, 3583-3607. [CrossRef] [PubMed] [Google Scholar]
  • Teklehaimanot A., Sachs J.D., Curtis C. (2007). Malaria control needs mass distribution of insecticidal bednets. Lancet , 369, 2143-2146. [CrossRef] [PubMed] [Google Scholar]
  • Vreysen M.J.B., Saleh K.M., Ali M.Y., Abdulla A.M., Zhu Z.R., Juma K.G., Dyck V.A., Msangi A.R., Mkonyi P.A., Feldmann H.U. (2000). Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol , 93, 123-135. [Google Scholar]
  • WHO, Prospects for malaria control by genetic manipulation of its vectors. Report of a meeting, 27–31 January 1991, Tucson, Arizona, USA, 1991, Available from WHO-TDR/BCV/MAL-ENT/91.3. [Google Scholar]
  • WHO, Global insecticide use for vector-borne disease control. A 10 year assessment (2000-2009), Fifth edition, World Health Organization, Geneva, Switzerland, 2011, 33 p. [Google Scholar]
  • WHO, Handbook for integrated vector management, World Health Organization, Geneva, Switzerland, 2012, 67 p., Available from WHO/HTM/NTD/VEM/2012.3. [Google Scholar]
  • WHO, World Malaria Report 2016, World Health Organization, Geneva, Switzerland, 2017, 147 p. [Google Scholar]
  • Wyss J.H., Screwworm eradication in the Americas, in: J. House, K.M. Kocan, P. Gibbs (Eds), Tropical veterinary diseases: Control and prevention in the context of the new world Order, Ann New York Acad Sci, New York, 2006, pp. 186-193. [Google Scholar]
  • Zhang D., Lees R.S., Xi Z., Gilles J.R., Bourtzis K. (2015). Combining the sterile insect technique with Wolbachia-based approaches: II-A safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLoS One , 10, e0135194. [CrossRef] [PubMed] [Google Scholar]
  • Zug R., Hammerstein P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggest that 40% of terrestrial arthropod species are infected. PLoS One , 7, e38544. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.