Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 213, Numéro 1-2, 2019
Page(s) 43 - 49
DOI https://doi.org/10.1051/jbio/2019022
Publié en ligne 5 juillet 2019
  • Bains, J.S., Wamsteeker-Cusulin, J.I., Inoue, W. (2015). Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci, 16, 377-388. [CrossRef] [PubMed] [Google Scholar]
  • Bannister, K., Dickenson, A.H. (2017). The plasticity of descending controls in pain: translational probing. J Physiol, 595, 4159-4166. [CrossRef] [PubMed] [Google Scholar]
  • Bing, Z., Villanueva, L., Le Bars, D. (1990). Acupuncture and diffuse noxious inhibitory controls; naloxone reversible depression of activities of trigeminal convergent neurones. Neuroscience, 37, 809-818. [PubMed] [Google Scholar]
  • Bourgeais, L., Arreto, C.D., Robert, C., Villanueva, L. Brain network dysfunctions as substrates of pain disorders: translational impact of animal studies. In: S.N. Raja, C.L. Sommer (Eds.), Refresher courses, 15th World Congress on Pain, IASP Press, Washington, DC, 2014, pp. 1-12. [Google Scholar]
  • Brennan, K.C., Pietrobon, D. (2018). A systems neuroscience approach to migraine. Neuron, 97, 1004-1021. [CrossRef] [PubMed] [Google Scholar]
  • Bushnell, M.C., Duncan, G.H., Dubner, R., He, L.F. (1984). Activity of trigeminothalamic neurons in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. J Neurophysiol, 52, 170-187. [CrossRef] [PubMed] [Google Scholar]
  • Cathcart, S., Winefield, A.H., Lushington, K, Rolan, P. (2010). Stress and tension-type headache mechanisms. Cephalalgia, 30, 1250-1267. [CrossRef] [PubMed] [Google Scholar]
  • Colloca, L., Benedetti, F. (2005). Placebos and painkillers: is mind as real as matter? Nat Rev Neurosci, 6, 545-552. [CrossRef] [PubMed] [Google Scholar]
  • Coppola, G., Pierelli, F., Schoenen, J. (2007). Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia, 27, 1427-1439. [CrossRef] [PubMed] [Google Scholar]
  • Craig, A.D. (2005). Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci, 9, 566-571. [CrossRef] [PubMed] [Google Scholar]
  • Critchley, H.D., Mathias, C.J., Dolan, R.J. (2001). Neuroanatomical basis for first- and second-order representations of bodily states. Nat Neurosci, 4, 207-212. [CrossRef] [PubMed] [Google Scholar]
  • Danziger, N., Willer, J.C. (2005). Tension-type headache as the unique pain experience of a patient with congenital insensitivity to pain. Pain, 117, 478-483. [CrossRef] [PubMed] [Google Scholar]
  • De Broucker, T., Cesaro, P., Willer, J.C., Le Bars, D. (1990). Diffuse noxious inhibitory controls in man. Involvement of the spinoreticular tract. Brain, 113, 1223-1234. [CrossRef] [PubMed] [Google Scholar]
  • Denuelle, M., Fabre, N., Payoux, P., Chollet, F., Géraud, G. (2007). Hypothalamic activation in spontaneous migraine attacks. Headache, 47, 1418-1426. [PubMed] [Google Scholar]
  • Deschênes, M., Veinante, P., Zhang, ZW. (1998). The organization of corticothalamic projections: reciprocity versus parity. Brain Res Rev, 28, 286-308. [CrossRef] [PubMed] [Google Scholar]
  • Duncan, G.H., Bushnell, M.C., Bates, R., Dubner, R. (1987). Task-related responses of monkey medullary dorsal horn neurons. J Neurophysiol, 57, 289-310. [CrossRef] [PubMed] [Google Scholar]
  • Eikermann-Haerter, K., Yuzawa, I., Dilekoz, E., Joutel, A., Moskowitz, M.A., Ayata, C. (2001). CADASIL mutations increase susceptibility to spreading depression. Ann Neurol, 69, 413-418. [Google Scholar]
  • Garcia Larrea, L., Bastuji, H. (2018). Pain and consciousness. Prog Neuropsychopharmacol Biol Psychiatry, 87, 193-199. [CrossRef] [PubMed] [Google Scholar]
  • Gauriau, C., Bernard, JF. (2004). A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol, 468, 24-56. [PubMed] [Google Scholar]
  • Giffin, N.J., Ruggiero, L., Lipton, R.B., Silberstein, S.D., Tvedskov, J.F., Olesen, J., Altman, J., Goadsby, P.J., Macrae, A. (2003). Premonitory symptoms in migraine: an electronic diary study. Neurology, 60, 935-940. [Google Scholar]
  • Goadsby, P.J., Lipton, R.B. (1997). A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic feature, including new cases. Brain, 120, 193-209. [CrossRef] [PubMed] [Google Scholar]
  • Krupa, D.J., Ghazanfar, A.A., Nicolelis, MA. (1999). Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc Natl Acad Sci USA, 9, 8200-8205. [CrossRef] [Google Scholar]
  • Léonard, G., Goffaux, Mathieu, D., Blanchard, J., Kenny, B., Marchand, S. (2009). Evidence of descending inhibition deficit in atypical but not classical trigeminal neuralgia. Pain, 147, 217-223. [CrossRef] [PubMed] [Google Scholar]
  • Maixner, W., Fillingim, R., Booker, D., Sigurdsson, A. (1995). Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain. Pain, 63, 341-351. [CrossRef] [PubMed] [Google Scholar]
  • Malick, A., Strassman, R.M., Burstein, R. (2000). Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol, 84, 2078-2112. [CrossRef] [PubMed] [Google Scholar]
  • Matharu, M.S., Cohen, A.S., McGonigle, D.J., Ward, N., Frackowiak, R.S., Goadsby, P.J. (2004). Posterior hypothalamic and brainstem activation in hemicrania continua. Headache, 44, 747-761. [CrossRef] [PubMed] [Google Scholar]
  • May, A., Bahra, A., Buchel, C, Frackowiak, R.S., Goadsby, P.J. (1998). Hypothalamic activation in cluster headache attacks. Lancet, 352, 275-278. [CrossRef] [PubMed] [Google Scholar]
  • Monconduit, L., Lopez-Avila, A., Molat, J.L., Chalus, M., Villanueva, L. (2006). Corticofugal output from the primary somatosensory cortex selectively modulates innocuous and noxious inputs in the rat spinothalamic system. J Neurosci, 26, 8441-8450. [CrossRef] [PubMed] [Google Scholar]
  • Mouraux, A., Iannetti, G.D. (2018). The search for pain biomarkers in the human brain. Brain, 141, 3290-3307. [CrossRef] [PubMed] [Google Scholar]
  • Noseda, R., Constandil, L., Bourgeais, L., Chalus, M., Villanueva, L. (2010). Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J Neurosci, 30, 14420-14429. [CrossRef] [PubMed] [Google Scholar]
  • Okada-Ogawa, A., Porreca, F., Meng, I.D. (2009). Sustained morphine-induced sensitization and loss of diffuse noxious inhibitory controls in dura-sensitive medullary dorsal horn neurons. J Neurosci, 29, 15828-15835. [CrossRef] [PubMed] [Google Scholar]
  • Perrotta, A., Serrao, M., Ambrosini, A., Bolla, M., Coppola, G., Sandrini, G., Pierelli, F. (2013). Facilitated temporal processing of pain and defective supraspinal control of pain in cluster headache. Pain, 154, 1325-1332. [CrossRef] [PubMed] [Google Scholar]
  • Pielsticker, A., Haag, G., Zaudig, M., Lautenbacher, S. (2005). Impairment of pain inhibition in chronic tension-type headache. Pain, 118, 215-223. [CrossRef] [PubMed] [Google Scholar]
  • Pietrobon, D., Moskowitz, M.A. (2013). Pathophysiology of migraine. Annu Rev Physiol, 5, 365-391. [Google Scholar]
  • Robert, C., Bourgeais, L., Arreto, C.D., Condes-Lara, M., Noseda, R., Jay, T., Villanueva, L. (2013). Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci, 33, 8827-8840. [CrossRef] [PubMed] [Google Scholar]
  • Sandrini, G., Rossi, P., Milanov, I., Serrao, M., Cecchini, AP., Nappi, G. (2006). Abnormal modulatory influence of diffuse noxious inhibitory controls in migraine and chronic tension-type headache patients. Cephalalgia, 26, 782-789. [CrossRef] [PubMed] [Google Scholar]
  • Simmons, D.M., Swanson, L.W. (2009). Comparison of the spatial distribution of seven types of neuroendocrine neurons in the rat paraventricular nucleus: toward a global 3D model. J Comp Neurol, 516, 423-441. [PubMed] [Google Scholar]
  • Smith, J.M., Bradley, D.P, James, M.F., Huang, CL. (2006). Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc, 81, 457-481. [CrossRef] [PubMed] [Google Scholar]
  • van den Maagdenberg, A.M.J.M., Pietrobon, D., Pizzorusso, T., Kaja, S., Broos, L.A.M., Cesetti, T., van de Ven, R.C.G., Tottene, A., van der Kaa, J., Plomp, J.J., Frants, R.R., Ferrari, M.D. (2004). A Cacna 1a knock in migraine mouse model with increased susceptibility to cortical spreading depression. Neuron, 41, 701-710. [CrossRef] [PubMed] [Google Scholar]
  • Villanueva, L., Le Bars, D. (1995). The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls. Biol Res, 28, 113-125. [PubMed] [Google Scholar]
  • Villanueva, L., Bouhassira, D., Le Bars, D. (1996). The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain, 67, 231-240. [CrossRef] [PubMed] [Google Scholar]
  • Villanueva, L., Fields, H.L. Endogenous central mechanisms of pain modulation. In: L. Villanueva, A.H. Dickenson, H. Ollat (Eds.), Progress in Pain Research and Management, IASP Press, Seattle, 2004 , vol. 31, pp. 223-246. [Google Scholar]
  • Villanueva, L., Noseda, R. Trigeminal mechanisms of nociception. In: S.L. McMahon, M. Koltzenburg, I. Tracey, D.C. Turk (Eds.), Wall and Melzack’s Textbook of Pain, 6 ed., Elsevier-Saunders, Philadelphia, 2013, pp. 793-802. [Google Scholar]
  • Yarnitsky, D., Granot, M., Granovsky, Y. (2014). Pain modulation profile and pain therapy: between pro- and antinociception. Pain, 155, 663-665. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.