Accès gratuit
Numéro |
Biologie Aujourd’hui
Volume 214, Numéro 1-2, 2020
|
|
---|---|---|
Page(s) | 25 - 31 | |
DOI | https://doi.org/10.1051/jbio/2020004 | |
Publié en ligne | 10 août 2020 |
- Abouheif, E., Favé, M.-J., Ibarrarán-Viniegra, A.S., Lesoway, M.P., Rafiqi, A.M., Rajakumar, R. (2014). Eco-evo-devo: The time has come. Exp Med Biol, 781, 107-125. [CrossRef] [Google Scholar]
- Aubret, F., Shine, R. (2009). Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr Biol, 19, 1932-1936. [CrossRef] [PubMed] [Google Scholar]
- Badenhorst, P., Xiao, H., Cherbas, L., Kwon, S.Y., Voas, M., Rebay, I., Cherbas, P., Wu, C. (2005). The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes Dev, 19, 2540-2545. [CrossRef] [PubMed] [Google Scholar]
- Bateman, K.G. (1959). The genetic assimilation of four venation phenocopies. J Genet, 56, 443-474. [Google Scholar]
- Beldade, P., Mateus, A.R., Keller, R.A. (2011). Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol, 20, 1347-1363. [CrossRef] [PubMed] [Google Scholar]
- Bodai, L., Zsindely, N., Gaspar, R., Kristo, I., Komonyi, O., Boros, I.M. (2012). Ecdysone induced gene expression is associated with acetylation of histone H3 lysine 23 in Drosophila melanogaster. PLoS One, 7, e40565. [CrossRef] [PubMed] [Google Scholar]
- Bradshaw, A.D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv Genet, 13, 115-155. [Google Scholar]
- Brakefield, P.M., Gates, J., Keys, D., Kesbeke, F., Wijngaarden, P.J., Monteiro, A., French, V., Carroll, S.B. (1996). Development, plasticity and evolution of butterfly eyespot patterns. Nature, 384, 236-242. [CrossRef] [PubMed] [Google Scholar]
- Buffon, Oeuvres complètes de Buffon avec des extraits de Daubenton et la classification de Cuvier, Furne et Ce, Paris, 1811. [Google Scholar]
- Casier, K., Delmarre, V., Gueguen, N., Hermant, C., Viodé, E., Vaury, C., Ronsseray, S., Brasset, E., Teysset, L., Boivin, A. (2019). Environmentally-induced epigenetic conversion of a piRNA cluster. ELife, 8, e39842. DOI: 10.7554/eLife.39842. [CrossRef] [PubMed] [Google Scholar]
- Corl, A., Bi, K., Luke, C., Challa, A.S., Stern, A.J., Sinervo, B., Nielsen, R. (2018). The genetic basis of adaptation following plastic changes in coloration in a novel environment. Curr Biol, 28, 2970-2977.e7. [CrossRef] [PubMed] [Google Scholar]
- De Castro, S., Peronnet, F., Gilles, J.-F., Mouchel-Vielh, E., Gibert, J.-M. (2018). bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet, 14, e1007573. [CrossRef] [PubMed] [Google Scholar]
- Denver, R.J. (1997). Environmental stress as a developmental cue: Corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm Behav, 31, 169-179. [CrossRef] [PubMed] [Google Scholar]
- Fanti, L., Piacentini, L., Cappucci, U., Casale, A.M., Pimpinelli, S. (2017). Canalization by selection of de novo induced mutations. Genetics, 206, 1995-2006. [CrossRef] [PubMed] [Google Scholar]
- Flatt, T. (2005). The evolutionary genetics of canalization. Q Rev Biol, 80, 287-316. [CrossRef] [PubMed] [Google Scholar]
- Foret, S., Kucharski, R., Pellegrini, M., Feng, S., Jacobsen, S.E., Robinson, G.E., Maleszka, R. (2012). DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci USA, 109, 4968-4973. [CrossRef] [Google Scholar]
- Gibert, J.-M., Mouchel-Vielh, E., De Castro, S., Peronnet, F. (2016). Phenotypic plasticity through transcriptional regulation of the evolutionary hotspot gene tan in Drosophila melanogaster. PLoS Genet, 12, e1006218. [CrossRef] [PubMed] [Google Scholar]
- Gibert, P., Moreteau, B., David, J.R. (2000). Developmental constraints on an adaptive plasticity: Reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol Dev, 2, 249-260. [CrossRef] [PubMed] [Google Scholar]
- Gilbert, S.F., Bosch, T.C.G., Ledón-Rettig, C. (2015). Eco-Evo-Devo: Developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet, 16, 611-622. [CrossRef] [PubMed] [Google Scholar]
- Gunter, H.M., Schneider, R.F., Karner, I., Sturmbauer, C., Meyer, A. (2017). Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol Ecol, 26, 6634-6653. [CrossRef] [PubMed] [Google Scholar]
- Heil, M., Greiner, S., Meimberg, H., Krüger, R., Noyer, J.-L., Heubl, G., Linsenmair, K.E., Boland, W. (2004). Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature, 430, 205-208. [PubMed] [Google Scholar]
- Hu, Y., Albertson, R.C. (2017). Baby fish working out: An epigenetic source of adaptive variation in the cichlid jaw. Proc Biol Sci, 16, 284. [Google Scholar]
- Johannsen, W. (1911). The genotype conception of heredity. Am Nat, XLV, 129-159. [Google Scholar]
- Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T., Lehner, B. (2017). Transgenerational transmission of environmental information in C. elegans. Science, 356, 320-323. [Google Scholar]
- Kucharski, R., Maleszka, J., Foret, S., Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319, 1827-1830. [Google Scholar]
- Leung, A., Parks, B.W., Du, J., Trac, C., Setten, R., Chen, Y., Brown, K., Lusis, A.J., Natarajan, R., Schones, D.E. (2014). Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet. J Biol Chem, 289, 23557-23567. [CrossRef] [PubMed] [Google Scholar]
- Levis, N.A., Pfennig, D.W. (2019). Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin Cell Dev Biol, 88, 80-90. [CrossRef] [PubMed] [Google Scholar]
- Lopes, R.J., Johnson, J.D., Toomey, M.B., Ferreira, M.S., Araujo, P.M., Melo-Ferreira, J., Andersson, L., Hill, G.E., Corbo, J.C., Carneiro, M. (2016). Genetic basis for red coloration in birds. Curr Biol, 26, 1427-1434. [CrossRef] [PubMed] [Google Scholar]
- Mayr, E., Animal Species and Evolution, Belknap Press of Harvard University Press, Cambridge, 1963. [Google Scholar]
- Moczek, A.P., Sultan, S., Foster, S., Ledon-Rettig, C., Dworkin, I., Nijhout, H.F., Abouheif, E., Pfennig, D.W. (2011). The role of developmental plasticity in evolutionary innovation. Proc Biol Sci, 278, 2705-2713. [PubMed] [Google Scholar]
- Monteiro, A., et al. (2015). Differential expression of ecdysone receptor leads to variation in phenotypic plasticity across serial homologs. PLoS Genet, 11, e1005529. [CrossRef] [PubMed] [Google Scholar]
- Nijhout, H.F. (2003). Development and evolution of adaptive polyphenisms. Evol Dev, 5, 9-18. [CrossRef] [PubMed] [Google Scholar]
- Pfennig, D.W., Ehrenreich, I.M. (2014). Towards a gene regulatory network perspective on phenotypic plasticity, genetic accommodation and genetic assimilation. Mol Ecol, 23, 4438-4440. [CrossRef] [PubMed] [Google Scholar]
- Pfennig, D.W., Wund, M.A., Snell-Rood, E.C., Cruickshank, T., Schlichting, C.D., Moczek, A.P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol, 25, 459-467. [CrossRef] [PubMed] [Google Scholar]
- Pigliucci, M., Phenotypic Plasticity, beyond Nature and Nurture, Johns Hopkins University Press, Baltimore and London, 2001. [Google Scholar]
- Price, T.D. (2006). Phenotypic plasticity, sexual selection and the evolution of colour patterns. J Exp Biol, 209, 2368-2376. [CrossRef] [PubMed] [Google Scholar]
- Rechavi, O., Houri-Ze’evi, L., Anava, S., Goh, W.S.S., Kerk, S.Y., Hannon, G.J., Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell, 158, 277-287. [CrossRef] [PubMed] [Google Scholar]
- Russo, V., Martiensen, R., Riggs, A., Introduction, in: Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, New York, 1996, 693+xii p. [Google Scholar]
- Schneider, R.F., Li, Y., Meyer, A., Gunter, H.M. (2014). Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish. Mol Ecol, 23, 4511-4526. [CrossRef] [PubMed] [Google Scholar]
- Sedkov, Y., Cho, E., Petruk, S., Cherbas, L., Smith, S.T., Jones, R.S., Cherbas, P., Canaani, E., Jaynes, J.B., Mazo, A. (2003). Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature, 426, 78-83. [PubMed] [Google Scholar]
- Sicard, A., Thamm, A., Marona, C., Lee, Y.W., Wahl, V., Stinchcombe, J.R., Wright, S.I., Kappel, C., Lenhard, M. (2014). Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene. Curr Biol, 24, 1880-1886. [CrossRef] [PubMed] [Google Scholar]
- Simola, D.F., Ye, C., Mutti, N.S., Dolezal, K., Bonasio, R., Liebig, J., Reinberg, D., Berger, S.L. (2012). A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res, 23, 486-496. [CrossRef] [PubMed] [Google Scholar]
- Simola, D.F., Graham, R.J., Brady, C.M., Enzmann, B.L., Desplan, C., Ray, A., Zwiebel, L.J., Bonasio, R., Reinberg, D., Liebig, J., Berger S.L. (2016). Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science, 351, 6268. [Google Scholar]
- Suzuki, Y., Nijhout, H.F. (2006). Evolution of a polyphenism by genetic accommodation. Science, 311, 650-652. [Google Scholar]
- Tabery, J. (2008). R.A. Fisher, Lancelot Hogben, and the origin(s) of genotype-environment interaction. J Hist Biol, 41, 717-761. [CrossRef] [PubMed] [Google Scholar]
- Tang, H.Y., Smith-Caldas, M.S., Driscoll, M.V., Salhadar, S., Shingleton, A.W. (2011). FOXO regulates organ-specific phenotypic plasticity in Drosophila. PLoS Genet, 7, e1002373. [CrossRef] [PubMed] [Google Scholar]
- Toomey, M.B., Lopes, R.J., Araújo, P.M., Johnson, J.D., Gazda, M.A., Afonso, S., Mota, P.G., Koch, R.E., Hill, G.E., Corbo, J.C., Carneiro, M. (2017). High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Proc Natl Acad Sci USA, 114, 5219-5224. [CrossRef] [Google Scholar]
- Waddington, C.H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563-565. [Google Scholar]
- Waddington, C.H. (1952). Selection of the genetic basis for an acquired character. Nature, 169, 278. [Google Scholar]
- Waddington, C.H. (1956). Genetic assimilation of the bithorax phenotype. Evolution, 10, 1-13. [Google Scholar]
- Waddington, C.H. (1959). Canalization of development and genetic assimilation of acquired characters. Nature, 183, 1654-1655. [PubMed] [Google Scholar]
- West-Eberhard, M.J., Developmental plasticity and evolution, Oxford University Press, New York, 2003. [CrossRef] [Google Scholar]
- Woltereck, R. (1909). Weitere experimentelle untersüchungen über artveränderung, speziell über das wesen quantitativer artunterschiede bei daphniden. Verhandlungen Dtsch Zooligischen Ges, 19, 110-172. [Google Scholar]
- Zhou, S., Campbell, T.G., Stone, E.A., Mackay, T.F., Anholt, R.R. (2012). Phenotypic plasticity of the Drosophila transcriptome. PLoS Genet, 8, e1002593. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.