Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 214, Numéro 1-2, 2020
Page(s) 33 - 44
DOI https://doi.org/10.1051/jbio/2020005
Publié en ligne 10 août 2020
  • Bastide, H., Betancourt, A., Nolte, V., Tobler, R., Stobe, P., Futschik, A., Schlotterer, C. (2013). A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. PLoS Genet, 9, e1003534. [CrossRef] [Google Scholar]
  • Bickel, R.D., Kopp, A., Nuzhdin, S.V. (2011). Composite effects of polymorphisms near multiple regulatory elements create a major-effect QTL. PLoS Genet, 7, e1001275. [CrossRef] [Google Scholar]
  • Bischof, J., Maeda, R.K., Hediger, M., Karch, F., Basler, K. (2007). An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA, 104, 3312-3317. [CrossRef] [Google Scholar]
  • Börsch-Haubold, A.G., Montero, I., Konrad, K., Haubold, B. (2014). Genome-wide quantitative analysis of histone H3 lysine 4 trimethylation in wild house mouse liver: environmental change causes epigenetic plasticity. PloS One, 9, e97568. [CrossRef] [Google Scholar]
  • Braendle, C., Caillaud, M.C., Stern, D.L. (2005). Genetic mapping of aphicarus – a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity, 94, 435-442. [CrossRef] [Google Scholar]
  • Braendle, C., Davis, G.K., Brisson, J.A., Stern, D.L. (2006). Wing dimorphism in aphids. Heredity, 97, 192-199. [CrossRef] [Google Scholar]
  • Brand, A.H., Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401-415. [Google Scholar]
  • Daniels, E.V., Murad, R., Mortazavi, A., Reed, R.D. (2014). Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns. Mol Ecol, 23, 6123-6134. [CrossRef] [Google Scholar]
  • De Castro, S., Peronnet, F., Gilles, J.-F., Mouchel-Vielh, E., Gibert, J.-M. (2018). bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet, 14, e1007573. [CrossRef] [PubMed] [Google Scholar]
  • Dembeck, L.M., Huang, W., Magwire, M.M., Lawrence, F., Lyman, R.F., Mackay, T.F.C. (2015). Genetic architecture of abdominal pigmentation in Drosophila melanogaster. PLoS Genet, 11, e1005163. [CrossRef] [Google Scholar]
  • Endler, L., Betancourt, A.J., Nolte, V., Schlötterer, C. (2015). Reconciling differences in Pool-GWAS between populations: A case study of female abdominal pigmentation in Drosophila melanogaster. Genetics, 202, 843-855. [CrossRef] [Google Scholar]
  • Fedorka, K.M., Copeland, E.K., Winterhalter, W.E. (2013). Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects. J Exp Biol, 216, 4005-4010. [CrossRef] [Google Scholar]
  • Foret, S., Kucharski, R., Pellegrini, M., Feng, S., Jacobsen, S.E., Robinson, G.E., Maleszka, R. (2012). DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci USA, 109, 4968-4973. [CrossRef] [Google Scholar]
  • Gibert, J.M., Peronnet, F., Schlotterer, C. (2007). Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet, 3, e30. [CrossRef] [Google Scholar]
  • Gibert, J.-M., Mouchel-Vielh, E., De Castro, S., Peronnet, F. (2016). Phenotypic plasticity through transcriptional regulation of the evolutionary hotspot gene tan in Drosophila melanogaster. PLoS Genet, 12, e1006218. [CrossRef] [PubMed] [Google Scholar]
  • Gibert, J.-M., Mouchel-Vielh, E., Peronnet, F. (2017). Modulation of yellow expression contributes to thermal plasticity of female abdominal pigmentation in Drosophila melanogaster. Sci Rep, 7, 43370. [CrossRef] [Google Scholar]
  • Gibert, P., Moreteau, B., David, J.R. (2000). Developmental constraints on an adaptive plasticity: reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol Dev, 2, 249-260. [CrossRef] [PubMed] [Google Scholar]
  • Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R., Lieb, J.D. (2007). FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res, 17, 877-885. [CrossRef] [Google Scholar]
  • Golovnin, A., Biryukova, I., Birukova, I., Romanova, O., Silicheva, M., Parshikov, A., Savitskaya, E., Pirrotta, V., Georgiev, P. (2003). An endogenous Su(Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila. Dev Camb Engl, 130, 3249-3258. [Google Scholar]
  • Grantham, M.E., Shingleton, A.W., Dudley, E., Brisson, J.A. (2019). Expression profiling of winged- and wingless-destined pea aphid embryos implicates insulin/insulin growth factor signaling in morph differences. Evol Dev, 22, 257-268. [CrossRef] [Google Scholar]
  • Holloway, G.J., Marriott, C.G., Crocker, Helen J. (1997). Phenotypic plasticity in hoverflies: the relationship between colour pattern and season in Episyrphus balteatus and other Syrphidae. Ecol Entomol, 22, 425-432. [CrossRef] [Google Scholar]
  • Jeong, S., Rokas, A., Carroll, S.B. (2006). Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell, 125, 1387-1399. [CrossRef] [PubMed] [Google Scholar]
  • Jeong, S., Rebeiz, M., Andolfatto, P., Werner, T., True, J., Carroll, S.B. (2008). The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell, 132, 783-793. [CrossRef] [PubMed] [Google Scholar]
  • Jong, P., Gussekloo, S., Brakefield, P. (1996). Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J Exp Biol, 199, 2655-2666. [Google Scholar]
  • Kalay, G., Wittkopp, P.J. (2010). Nomadic enhancers: Tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species. PLoS Genet, 6, e1001222. [CrossRef] [Google Scholar]
  • Koch, P.B., Bückmann, D. (1987). Hormonal control of seasonal morphs by the timing of ecdysteroid release in Arashnia levana L. (Nymphalidae: Lepidoptera). J Insect Physiol, 33, 823-929. [CrossRef] [Google Scholar]
  • Kopp, A., Graze, R.M., Xu, S., Carroll, S.B., Nuzhdin, S.V. (2003). Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster. Genetics, 163, 771-787. [Google Scholar]
  • Kucharski, R., Maleszka, J., Foret, S., Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319, 1827-1830. [CrossRef] [PubMed] [Google Scholar]
  • Kuyucu, A.C., Sahin, M.K., Caglar, S.S. (2018). The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J Therm Biol, 71, 212-220. [CrossRef] [Google Scholar]
  • Leung, A., Parks, B.W., Du, J., Trac, C., Setten, R., Chen, Y., Brown, K., Lusis, A.J., Natarajan, R., Schones, D.E. (2014). Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet. J Biol Chem, 289, 23557-23567. [CrossRef] [PubMed] [Google Scholar]
  • Li, B., Bickel, R.D., Parker, B.J., Saleh Ziabari, O., Liu, F., Vellichirammal, N.N., Simon, J.-C., Stern, D.L., Brisson, J.A. (2020). A large genomic insertion containing a duplicated follistatin gene is linked to the pea aphid male wing dimorphism. ELife, 9, e50608. [CrossRef] [Google Scholar]
  • Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C., Maleszka, R. (2010). The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol, 8, e1000506. [CrossRef] [Google Scholar]
  • Massey, J.H., Wittkopp, P.J. (2016). The genetic basis of pigmentation differences within and between Drosophila species. Curr Top Dev Biol, 119, 27-61. [CrossRef] [Google Scholar]
  • McKay, D.J., Lieb, J.D. (2013). A common set of DNA regulatory elements shapes Drosophila appendages. Dev Cell, 27, 306-318. [CrossRef] [Google Scholar]
  • Michie, L.J., Mallard, F., Majerus, M.E., Jiggins, F.M. (2010). Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J Evol Biol, 23, 1699-1707. [CrossRef] [Google Scholar]
  • Mohan, M., Herz, H.-M., Smith, E.R., Zhang, Y., Jackson, J., Washburn, M.P., Florens, L., Eissenberg, J.C., Shilatifard, A. (2011). The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol, 31, 4310-4318. [CrossRef] [Google Scholar]
  • Monteiro, A., Tong, X., Bear, A., Liew, S.F., Bhardwaj, S., Wasik, B.R., Dinwiddie, A., Bastianelli, C., Cheong, W.F., Wenk, M.R., Cao H., Prudic K.L. (2015). Differential expression of ecdysone receptor leads to variation in phenotypic plasticity across serial homologs. PLoS Genet, 11, e1005529. [CrossRef] [PubMed] [Google Scholar]
  • Munté, A., Aguadé, M., Segarra, C. (1997). Divergence of the yellow gene between Drosophila melanogaster and D. subobscura: recombination rate, codon bias and synonymous substitutions. Genetics, 147, 165-175. [CrossRef] [Google Scholar]
  • Pigliucci, M., Phenotypic Plasticity, Beyond Nature and Nurture, Baltimore and London, 2001. [Google Scholar]
  • Reinhardt, R., Der Landkärtchenfalter, A. Ziemsen Verlag, Wittenberg Lutherstadt, 1984. [Google Scholar]
  • Roeske, M.J., Camino, E.M., Grover, S., Rebeiz, M., Williams, T.M. (2018). Cis-regulatory evolution integrated the bric-à-brac transcription factors into a novel fruit fly gene regulatory network. ELife, 7, e32273. [CrossRef] [Google Scholar]
  • Roessingh, P., Bouaïchi, A., Simpson, S.J. (1998). Effects of sensory stimuli on the behavioural phase state of the desert locust, Schistocerca gregaria. J Insect Physiol, 44, 883-893. [CrossRef] [Google Scholar]
  • Rogers, W.A., Salomone, J.R., Tacy, D.J., Camino, E.M., Davis, K.A., Rebeiz, M., Williams, T.M. (2013). Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity. PLoS Genet, 9, e1003740. [CrossRef] [Google Scholar]
  • Sharma, A.I., Yanes, K.O., Jin, L., Garvey, S.L., Taha, S.M., Suzuki, Y. (2016). The phenotypic plasticity of developmental modules. EvoDevo, 7, 15. [CrossRef] [Google Scholar]
  • Sibilia, C.D., Brosko, K.A., Hickling, C.H., Thompson, L.M., Grayson, K.L., Olson, J.R. (2018). Thermal physiology and developmental plasticity of pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). J Insect Sci, Online, 18, 4. [Google Scholar]
  • Simola, D.F., Graham, R.J., Brady, C.M., Enzmann, B.L., Desplan, C., Ray, A., Zwiebel, L.J., Bonasio, R., Reinberg, D., Liebig, J., Berger, S.L. (2016). Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science, 351, 6268. [CrossRef] [Google Scholar]
  • Simpson, S.J., Despland, E., Hägele, B.F., Dodgson, T. (2001). Gregarious behavior in desert locusts is evoked by touching their back legs. Proc Natl Acad Sci USA, 98, 3895-3897. [CrossRef] [Google Scholar]
  • Simpson, S.J., Sword, G.A., Lo, N. (2011). Polyphenism in insects. Curr Biol, 21, R738-749. [CrossRef] [Google Scholar]
  • Spannhoff, A., Kim, Y.K., Raynal, N.J.-M., Gharibyan, V., Su, M.-B., Zhou, Y.-Y., Li, J., Castellano, S., Sbardella, G., Issa, J.-P.J., Bedford, M.T. (2011). Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep, 12, 238-243. [CrossRef] [Google Scholar]
  • Sugahara, R., Saeki, S., Jouraku, A., Shiotsuki, T., Tanaka, S. (2015). Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust. J Insect Physiol, 79, 80-87. [CrossRef] [Google Scholar]
  • Sugahara, R., Tanaka, S., Jouraku, A., Shiotsuki, T. (2017). Two types of albino mutants in desert and migratory locusts are caused by gene defects in the same signaling pathway. Gene, 608, 41-48. [CrossRef] [Google Scholar]
  • Tang, H.Y., Smith-Caldas, M.S., Driscoll, M.V., Salhadar, S., Shingleton, A.W. (2011). FOXO regulates organ-specific phenotypic plasticity in Drosophila. PLoS Genet, 7, e1002373. [CrossRef] [PubMed] [Google Scholar]
  • True, J.R., Yeh, S.D., Hovemann, B.T., Kemme, T., Meinertzhagen, I.A., Edwards, T.N., Liou, S.R., Han, Q., Li, J. (2005). Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet, 1, e63. [CrossRef] [Google Scholar]
  • van Dijk, K., Ding, Y., Malkaram, S., Riethoven, J.-J.M., Liu, R., Yang, J., Laczko, P., Chen, H., Xia, Y., Ladunga, I., Avramova, Z., Fromm, M. (2010). Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol, 10, 238. [CrossRef] [Google Scholar]
  • Vellichirammal, N.N., Gupta, P., Hall, T.A., Brisson, J.A. (2017). Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proc Natl Acad Sci USA, 114, 1419-1423. [CrossRef] [Google Scholar]
  • Watt, W.B. (1969). Adaptive significance of pigment polymorphisms in Colias butterflies, II. Thermoregulation and photopriodically controlled melanin variation in Colias eurytheme. Proc Natl Acad Sci USA, 63, 767-774. [CrossRef] [Google Scholar]
  • Weiner, A., Chen, H.V., Liu, C.L., Rahat, A., Klien, A., Soares, L., Gudipati, M., Pfeffner, J., Regev, A., Buratowski, S., Pleiss, J.A., Friedman, N., Rando, O.J. (2012). Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol, 10, e1001369. [CrossRef] [Google Scholar]
  • Williams, T.M., Selegue, J.E., Werner, T., Gompel, N., Kopp, A., Carroll, S.B. (2008). The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell, 134, 610-623. [CrossRef] [Google Scholar]
  • Wittkopp, P.J., True, J.R., Carroll, S.B. (2002). Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development, 129, 1849-1858. [Google Scholar]
  • Yassin, A., Bastide, H., Chung, H., Veuille, M., David, J.R., Pool, J.E. (2016). Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nat Commun, 7, 10400. [CrossRef] [Google Scholar]
  • Yeaman, S., Chen, Y., Whitlock, M.C. (2010). No effect of environmental heterogeneity on the maintenance of genetic variation in wing shape in Drosophila Melanogaster. Evolution, 64, 3398-3408. [CrossRef] [Google Scholar]
  • Zhou, S., Campbell, T.G., Stone, E.A., Mackay, T.F., Anholt, R.R. (2012). Phenotypic plasticity of the Drosophila transcriptome. PLoS Genet, 8, e1002593. [CrossRef] [PubMed] [Google Scholar]
  • Zong, W., Zhong, X., You, J., Xiong, L. (2013). Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol, 81, 175-188. [CrossRef] [Google Scholar]
  • Zverev, V., Kozlov, M.V., Forsman, A., Zvereva, E.L. (2018). Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. J Therm Biol, 74, 100-109. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.