Accès gratuit
Numéro |
Biologie Aujourd’hui
Volume 214, Numéro 1-2, 2020
|
|
---|---|---|
Page(s) | 45 - 53 | |
DOI | https://doi.org/10.1051/jbio/2020006 | |
Publié en ligne | 10 août 2020 |
- Ailion, M., Thomas, J.H. (2000). dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics, 156, 1047-1067. [PubMed] [Google Scholar]
- Antebi, A. (2013). Steroid regulation of C. elegans diapause, developmental timing, and longevity. Curt Top Dev Biol, 105, 181-212. [CrossRef] [Google Scholar]
- Antebi, A., Culotti, J.G., Hedgecock, E.M. (1998). Daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development, 125, 1191-1205. [PubMed] [Google Scholar]
- Ashton, F.T., Bhopale, V.M., Holt, D., Smith, G., Schad, G.A. (1998). Developmental switching in the parasitic nematode Strongyloides stercoralis is controlled by the ASF and ASI amphidial neurons. J Parasitol, 84, 691. [Google Scholar]
- Atkinson, D. (1994). Temperature and organism size– A biological law for Ectotherms? Adv Ecol Res, 25, 1-58. [Google Scholar]
- Bargmann, C.I., Horvitz, H.R. (1991). Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science, 251, 1243-1246. [Google Scholar]
- Barrière, A., Félix, M.A. (2005). Natural variation and population genetics of Caenorhabditis elegans. WormBook, 26, 1-19. [Google Scholar]
- Barrière, A. Félix, M.A. (2007). Temporal dynamics and linkage disequilibrium in Natural Caenorhabditis elegans populations. Genetics, 176, 999-1011. [CrossRef] [PubMed] [Google Scholar]
- Buckley, L.B., Arakaki, A.J., Cannistra, A.F., Kharouba, H.M., Kingsolver, J.G. (2017). Insect development, thermal plasticity and fitness implications in changing, seasonal environments. Integr Comp Biol, 57, 988-998. [CrossRef] [PubMed] [Google Scholar]
- Burnell, A.M., Houthoofd, K., O’Hanlon, K., Vanfleteren, J.R. (2005). Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Exp Gerontol, 40, 850-856. [CrossRef] [PubMed] [Google Scholar]
- Butcher, R.A., Fujita, M., Schroeder, F.C., Clardy, J. (2007). Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol, 3, 420-422. [Google Scholar]
- Cassada, R.C., Russell, R.L. (1975). The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol, 46, 326-342. [CrossRef] [PubMed] [Google Scholar]
- Choe, A., Von Reuss, S.H., Kogan, D., Gasser, R.B., Platzer, E.G., Schroeder, F.C., Sternberg, P.W. (2012). Ascaroside signaling is widely conserved among nematodes. Curr Biol, 22, 772-780. [CrossRef] [PubMed] [Google Scholar]
- Chown, S.L., Addo-Bediako, A., Gaston, K.J. (2002). Physiological variation in insects: Large-scale patterns and their implications. Comp Biochem Physiol B Biochem Mol Biol, 131, 587-602. [CrossRef] [PubMed] [Google Scholar]
- Colella, E., Li, S., Roy, R. (2016). Developmental and cell cycle quiescence is mediated by the nuclear hormone receptor coregulator DIN-1S in the Caenorhabditis elegans dauer larva. Genetics, 203, 1763-1776. [CrossRef] [PubMed] [Google Scholar]
- Crook, M. (2014). The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol, 44, 1-8. [Google Scholar]
- Debat, V., David, P. (2001). Mapping phenotypes: Canalization, plasticity and developmental stability. Trends Ecol Evol, https://doi.org/10.1016/S0169-5347(01)02266-2. [Google Scholar]
- Diaz, S.A., Viney, M. (2015). The evolution of plasticity of dauer larva developmental arrest in the nematode Caenorhabditis elegans. Ecol Evol, 5, 1343-1353. [PubMed] [Google Scholar]
- Diaz, S.A., Brunet, V., Lloyd-Jones, G.C., Spinner, W., Wharam, B., Viney, M. (2014). Diverse and potentially manipulative signalling with ascarosides in the model nematode C. elegans. BMC Evol Biol, 14, 1-8. [Google Scholar]
- Estevez, M, Attisano, L., Wrana, J.L., Albert, P.S., Massagué, J., Riddle, D.L. (1993). The Daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature, 365, 644-649. [PubMed] [Google Scholar]
- Félix, M.A., Braendle, C. (2010). The natural history of Caenorhabditis elegans. Curr Biol, 20, R965-R969. [CrossRef] [PubMed] [Google Scholar]
- Fielenbach, N., Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes Dev, 22, 2149-2165. [CrossRef] [PubMed] [Google Scholar]
- Flatt, T. (2005). The evolutionary genetics of canalization. Q Rev Biol, 80, 287-316. [CrossRef] [PubMed] [Google Scholar]
- Frézal, L., Félix, M.A. (2015). C. elegans outside the Petri dish. ELife 4, 068849. [Google Scholar]
- Georgi, L.L., Albert, P.S., Riddle, D.L. (1990). Daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell, 61, 635-645. [CrossRef] [PubMed] [Google Scholar]
- Gerisch, B., Antebi, A. (2004). Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development, 131, 1765-1776. [CrossRef] [PubMed] [Google Scholar]
- Gibert, J.M. (2017). The flexible stem hypothesis: Evidence from genetic data. Dev Genes Evol, 227, 297-307. [CrossRef] [PubMed] [Google Scholar]
- Golden, J.W., Riddle, D.L. (1982). A pheromone influences larval development in the nematode Caenorhabditis elegans. Science, 218, 578-580. [Google Scholar]
- Golden J.W., Riddle, D.L. (1984). The Caenorhabditis elegans dauer larva: Developmental effects of pheromone, food, and temperature. Devl Biol, 102, 368-378. [CrossRef] [Google Scholar]
- Grant, W.N., Stasiuk, S., Newton-Howes, J., Ralston, M., Bisset, S.A., Heath, D.D., Shoemaker, C.B. (2006). Parastrongyloides trichosuri, a nematode parasite of mammals that is uniquely suited to genetic analysis. Intl J Parasitol, 36, 453-466. [CrossRef] [Google Scholar]
- Green, J.W.M., Snoek, L.B., Kammenga, J.E., Harvey, S.C. (2013). Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans. Heredity, 111, 306-313. [CrossRef] [PubMed] [Google Scholar]
- Green, J.W.M., Stastna J.J., Orbidans, H.E, Harvey, S.C. (2014). Highly polygenic variation in environmental perception determines dauer larvae formation in growing populations of Caenorhabditis elegans. PLoS ONE, 9, 11. [Google Scholar]
- Hallem, E.A., Rengarajan, M., Ciche, T.A.A., Sternberg, P.W. (2007). Nematodes, bacteria, and flies: A tripartite model for nematode parasitism. Curr Biol, 17, 898-904. [CrossRef] [PubMed] [Google Scholar]
- Harvey, S.C., Gemmill, A.W., Read, A.F., Viney, M.E. (2000). The control of morph development in the parasitic nematode Strongyloides ratti. Proc Royal Soc B: Biol Sci, 26, 1457. [Google Scholar]
- Harvey, S.C., Shorto, A., Viney, M.E. (2008). Quantitative genetic analysis of life-history traits of Caenorhabditis elegans in stressful environments. BMC Evol Biol, 8, 15. [CrossRef] [PubMed] [Google Scholar]
- Hawdon, J.M., Datu, B. (2003). The second messenger cyclic GMP mediates activation in Ancylostoma caninum infective larvae. Intl J Parasitol, 33, 787-793. [CrossRef] [Google Scholar]
- Hertweck, M., Göbel, C., Baumeister, R. (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell, 6, 577-588. [CrossRef] [PubMed] [Google Scholar]
- Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., Vanfleteren, J.R. (2002). Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp Gerontol, 37, 1015-1021. [CrossRef] [PubMed] [Google Scholar]
- Huang, S.C.C., Chan, D.T.Y., Smyth, D.J., Ball, G., Gounaris, K., Selkirk, M.E. (2010). Activation of Nippostrongylus brasiliensis infective larvae is regulated by a pathway distinct from the hookworm Ancylostoma caninum. Int J Parasitol, 40, 1619-1628. [Google Scholar]
- Inoue, T., Thomas, J.H. (2000). Targets of TGF-β signaling in Caenorhabditis elegans dauer formation. Dev Biol, 217, 192-204. [CrossRef] [PubMed] [Google Scholar]
- Jeong, P.Y., Jung, M., Yim, Y.H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y.H., Kim, K., Paik, Y.K. (2005). Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature, 433, 541-545. [PubMed] [Google Scholar]
- Karp, X. (2018). Working with dauer larvae. WormBook, 1-19. [Google Scholar]
- Kimura, K.D., Tissenbaum, H.A., Liu, Y., Ruvkun, G. (1997). Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 277, 942-946. [Google Scholar]
- Kiontke, K., Sudhaus, W. (2006). Ecology of Caenorhabditis species. WormBook, 1-14. [Google Scholar]
- Lee, D., Zdraljevic, S., Cook, D.E., . Frézal, L., Hsu, J.C., Sterken, M.G., Riksen, J.A.G., Wang, J., Kammenga, J.E., Braendle, C., Félix, M.-A., Schroeder, F.C., Andersen, E.C. (2019). Selection and gene flow shape niche-associated variation in pheromone response. Nat Ecol Evol, 3, 1455-463. [CrossRef] [PubMed] [Google Scholar]
- Lee, H., Choi, M.K., Lee, D., Kim, H.S., Hwang, H., Kim, H., Park, S., Paik, Y.K., Lee, J. (2013). Erratum: Nictation, a dispersal behavior of the nematode Caenorhabditis elegans is regulated by IL2 neurons (Nat Neurosci, 2012,15,107-112). Nat Neurosci, 16, 1906. [Google Scholar]
- Lee, R.Y.N., Hench, J., Ruvkun, G. (2001). Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the Daf-2 insulin-like signaling pathway. Curr Biol, 11, 1950–1957. [CrossRef] [PubMed] [Google Scholar]
- Ley, P. de. (2006). A quick tour of nematode diversity and the backbone of nematode phylogeny. WormBook. https://doi.org/10.1895/wormbook.1.41.1. [Google Scholar]
- Li, W., Kennedy, S.G., Ruvkun, G. (2003). Daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev, 17, 844–858. [CrossRef] [PubMed] [Google Scholar]
- Lin, K., Dorman, J.B., Rodan, A., Kenyon, C. (1997). Daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science, 278, 1319-1322. [Google Scholar]
- Liu, T., Zimmerman, K.K., Patterson, G.I. (2004). Regulation of signaling genes by TGFβ during entry into dauer diapause in C. elegans. BMC Dev Biol, 4, 11. [CrossRef] [PubMed] [Google Scholar]
- Ludewig, A.H., Kober-Eisermann, C., Weitzel, C., Bethke, A., Neubert, K., Gerisch, B., Hutter, H., Antebi, A. (2004). A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes Dev, 18, 2120-2133. [CrossRef] [PubMed] [Google Scholar]
- Ludewig, A.H., Izrayelit, Y., Park, D., Malik, R.U., Zimmermann, A., Mahanti, P., Fox, B.W., Bethke, A., Doering, F., Riddle, D.L., Schroeder, F.C. (2013). Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc Natl Acad Sci USA, 110, 5522-5527. [CrossRef] [Google Scholar]
- Mak, H.Y., Ruvkun, G. (2004). Intercellular signaling of reproductive development by the C. elegans DAF-9 cytochrome P450. Development, 131, 1777-1786. [CrossRef] [PubMed] [Google Scholar]
- Maleszka, R. (2018). Beyond royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun Biol, 1, 8. [Google Scholar]
- McGrath, P.T., Xu, Y., Ailion, M., Garrison, J.L., Butcher, R.A., Bargmann, C.I. (2011). Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature, 477, 321-325. [PubMed] [Google Scholar]
- Moczek, A.P. (2015). Developmental plasticity and evolution – Quo Vadis? Heredity, 115. Oxford: Oxford University Press. [Google Scholar]
- Morris, J.Z., Tissenbaum, H.A., Ruvkun, G. (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, 382, 536-539. [PubMed] [Google Scholar]
- Motola, D.L., Cummins, C.L., Rottiers, V., Sharma, K.K., Li, T., Li, Y., Suino-Powell, K., Xu, H.E., Auchus, R.J., Antebi, A., Mangelsdorf, D.J. (2006). Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell, 124, 1209-1223. [CrossRef] [PubMed] [Google Scholar]
- Navara, K.J. (2018). Mechanisms of environmental sex determination in fish, amphibians, and reptiles, in: Choosing sexes. Fascinating life sciences, Springer, Cham, pp. 213-340. [CrossRef] [Google Scholar]
- Nijhout, H.F. (1999). Control mechanisms of polyphenic development in Insects. BioScience, 49, 181-192. [Google Scholar]
- Nijhout, H.F. (2003). Development and evolution of adaptive olyphenisms. Evol Dev, 5, 9-18. [CrossRef] [PubMed] [Google Scholar]
- O’Donnell, M.P., Chao, P.H., Kammenga, J.E., Sengupta, P. (2018). Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genetics, 14, e1007213. [CrossRef] [PubMed] [Google Scholar]
- Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H.A., Ruvkun, G. (1997). The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, 389, 994-99. [PubMed] [Google Scholar]
- Palominos, M.F., Verdugo, L., Gabaldon, C., Pollak, B., Ortíz-Severín, J., Varas, M.A., Chávez, F.P., Calixto, A. (2017). Transgenerational diapause as an avoidance strategy against bacterial pathogens in Caenorhabditis elegans. MBio, 8, 5. [Google Scholar]
- Paradis, S., Ruvkun, G. (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from Age-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev, 12, 2488-2498. [CrossRef] [PubMed] [Google Scholar]
- Paradis, S., Ailion, M., Toker, A., Thomas, J.H., Ruvkun, G. (1999). A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev, 13, 1438-1452. [CrossRef] [PubMed] [Google Scholar]
- Park, D., O’Doherty, I., Somvanshi, R.K, Bethke, A., Schroeder, F.C., Kumar, U., Riddle, D.L. (2012). Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc Natl Acad Sci USA, 109, 9917-9922. [CrossRef] [Google Scholar]
- Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture, Johns Hopkins University Press, vol. 89. [Google Scholar]
- Ren, P., Lim, C.S., Johnsen, R., Albert, P.S., Pilgrim, D., Riddle, D.L. (1996). Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science, 274, 1389-1391. [Google Scholar]
- Riddle, D.L, Albert, P.S. (1997). Genetic and environmental regulation of dauer larva development. C. elegans II. Chapter 26. Cold Spring Harbor Laboratory Press (NY). [Google Scholar]
- Schackwitz, W.S., Inoue, T., Thomas, J.H. (1996). Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron, 17, 719-728. [CrossRef] [PubMed] [Google Scholar]
- Scheiner, S.M. (1993). Genetics and evolution of phenotypic plasticity. Ann Rev Ecol System, 24, 35-68. [CrossRef] [Google Scholar]
- Shaw, W.M., Luo, S., Landis, J., Ashraf, J., Murphy, C.T. (2007). The C. elegans TGF-β dauer pathway regulates longevity via insulin signaling. Curr Biol, 17, 1635-1645. [CrossRef] [PubMed] [Google Scholar]
- Stasiuk, S.J., Scott, M.J., Grant, W.N. (2012). Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. Evo Devo, 3, 1. [Google Scholar]
- Stearns, S.C. 1989. The evolutionary significance of phenotypic plasticity. BioScience, 39, 436-445. [Google Scholar]
- Stoltzfus, J.D., Massey, H.C., Nolan, T.J., Griffith, S.D., Lok, J.B. (2012). Strongyloides stercoralis Age-1: A potential regulator of infective larval development in a parasitic nematode. PLoS ONE, 7, 6. [Google Scholar]
- Vanfleteren, J.R., De Vreese, A. (1996). Rate of aerobic metabolism and superoxide production rate potential in the nematode Caenorhabditis elegans. J Exp Zool, 274, 93-100. [CrossRef] [PubMed] [Google Scholar]
- Viney, M.E., Gardner, M. P., Jackson, J.A. (2003). Variation in Caenorhabditis elegans dauer larva formation. Devt Growth Differ, 45, 389-396. [CrossRef] [Google Scholar]
- Vowels, J.J., Thomas, J.H. (1992). Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics, 130, 105-123. [CrossRef] [PubMed] [Google Scholar]
- Wagner, G.P., Zhang, J. (2011). The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nat Rev Genet, 12, 204-213. [CrossRef] [PubMed] [Google Scholar]
- White, P.S., Penley, M.K.J., Tierney, A.R.P., Soper, D.M., Morran, L.T. (2019). dauer life stage of Caenorhabditis elegans induces elevated levels of defense against the parasite Serratia marcescens. Scientific Reports, 9, 11575. [CrossRef] [PubMed] [Google Scholar]
- Wolkow, C., Hall, D.H. (2012). WormAtlas dauer Handbook – The dauer Nervous System – Neuroanatomy. WormAtlas. https://doi.org/10.3908/wormatlas.3.4. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.