Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 214, Numéro 3-4, 2020
Page(s) 125 - 135
Section Centenaire de la Société de Biologie de Strasbourg
DOI https://doi.org/10.1051/jbio/2020011
Publié en ligne 24 décembre 2020
  • Achour, Z., Archipiano, M., Barneche, F., Baurens, C., Beckert, M. Ben, C. (2017). Epigenetics in plant breeding. Article de positionnement du Groupement d’intérêt scientifique Biotechnologies vertes et de l’Alliance nationale de recherche pour l’environnement. Disponible en ligne à l’adresse http://www.gisbiotechnologiesvertes.com/fr/publications/position-paperepigenetics-in-plant-breeding. [Google Scholar]
  • Aichinger, E., Kornet, N., Friedrich, T., Laux, T. (2012). Plant stem cell niches. Annu Rev Plant Biol, 63, 615-636. [CrossRef] [PubMed] [Google Scholar]
  • Alonso, C., Ramos-Cruz, D., Becker, C. (2019). The role of plant epigenetics in biotic interactions. New Phytol, 221, 731-737. [CrossRef] [PubMed] [Google Scholar]
  • Amaral, J., Ribeyre, Z., Vigneaud, J., Sow, M.D., Fichot, R., Messier, C., Pinto, G., Nolet, P., Maury, S. (2020). Advances and promises of epigenetics for forest trees. Forests, 11, 976. [Google Scholar]
  • Bannister, A.J., Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res, 21, 381-395. [CrossRef] [PubMed] [Google Scholar]
  • Baubec, T., Finke, A., Mittelsten Scheid, O., Pecinka, A. (2014). Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep, 15, 446-452. [CrossRef] [PubMed] [Google Scholar]
  • Baulcombe, D.C., Dean, C. (2014). Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol, 6, 19471-19489. [Google Scholar]
  • Becker, P.B., Hörz, W. (2002). ATP-dependent nucleosome remodeling. Annu Rev Biochem, 71, 247-273. [CrossRef] [PubMed] [Google Scholar]
  • Berry, S., Hartley, M., Olsson, T.S.G., Dean, C., Howard, M. (2015). Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. ELife, 4, 07205. [Google Scholar]
  • Bertini, L., Proietti, S., Focaracci, F., Sabatini, B., Caruso, C. (2018). Epigenetic control of defense genes following MeJA-induced priming in rice (O. sativa). J Plant Physiol, 228, 166-177. [CrossRef] [PubMed] [Google Scholar]
  • Bewg, W.P., Ci, D., Tsai, C.-J. (2018). Genome editing in trees: from multiple repair pathways to long-term stability. Front Plant Sci, 9, 63-70. [CrossRef] [PubMed] [Google Scholar]
  • Biswas, S., Rao, C.M. (2017). Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther, 173, 118-134. [CrossRef] [PubMed] [Google Scholar]
  • Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433, 39-44. [CrossRef] [PubMed] [Google Scholar]
  • Bossdorf, O., Richards, C.L., Pigliucci, M. (2007). Epigenetics for ecologists. Ecol Lett, 11, 106-115. [Google Scholar]
  • Bratzel, F., López-Torrejón, G., Koch, M., Del Pozo, J.C., Calonje, M. (2010). Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol, 20, 1853-1859. [CrossRef] [PubMed] [Google Scholar]
  • Cao, X., He, Z., Guo, L., Liu, X. (2015). Epigenetic mechanisms are critical for the regulation of WUSCHEL expression in floral meristems. Plant Physiol, 168, 1189-1196. [Google Scholar]
  • Chang, Y.-N., Zhu, C., Jiang, J., Zhang, H., Zhu, J.-K., Duan, C.-G. (2020). Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol, 62, 563-580. [Google Scholar]
  • Chen, D., Molitor, A., Liu, C., Shen, W.-H. (2010). The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res, 20, 1332-1344. [CrossRef] [PubMed] [Google Scholar]
  • Chen, D., Molitor, A.M., Xu, L., Shen, W.-H. (2016). Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes. BMC Biol, 14, 112. [CrossRef] [PubMed] [Google Scholar]
  • Colomé-Tatché, M., Cortijo, S., Wardenaar, R., Morgado, L., Lahouze, B., Sarazin, A., Etcheverry, M., Martin, A., Feng, S., Duvernois-Berthet, E., Labadie, K., Wincker, P., Jacobsen, S.E., Jansen, R.C., Colot, V., Johannes, F. (2012). Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. PNAS, 109, 16240-16245. [CrossRef] [Google Scholar]
  • Conde, D., Le Gac, A.-L., Perales, M., Dervinis, C., Kirst, M., Maury, S., González-Melendi, P., Allona, I. (2017). Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break: role of active DNA demethylase in trees bud break. Plant Cell Environ, 40, 2236-2249. [CrossRef] [PubMed] [Google Scholar]
  • Correia, B., Valledor, L., Hancock, R.D., Jesus, C., Amaral, J., Meijón, M., Pinto, G. (2016). Depicting how Eucalyptus globulus survives drought: involvement of redox and DNA methylation events. Funct Plant Biol, 43, 838-850. [CrossRef] [PubMed] [Google Scholar]
  • Cortijo, S., Wardenaar, R., Colome-Tatche, M., Gilly, A., Etcheverry, M., Labadie, K., Caillieux, E., Hospital, F., Aury, J.-M., Wincker, P., Roudier, F., Jansen, R.C., Colot, V., Johannes, F. (2014). Mapping the epigenetic basis of complex traits. Science, 343, 1145-1148. [Google Scholar]
  • Cubas, P., Vincent, C., Coen, E. (1999). An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401, 157-161. [CrossRef] [PubMed] [Google Scholar]
  • Danchin, E. (2013). Avatars of information: towards an inclusive evolutionary synthesis. Trends Ecol Evol, 28, 351-358. [CrossRef] [PubMed] [Google Scholar]
  • Darwin, C., The power of movements in plants, London, John Murray, 1880, 592 p. [Google Scholar]
  • Dodsworth, S. (2009). A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol, 336, 1-9. [CrossRef] [PubMed] [Google Scholar]
  • Dugé de Bernonville, T., Maury, S., Delaunay, A., Daviaud, C., Chaparro, C., Tost, J., O’Connor, S.E., Courdavault, V. (2020). Developmental Methylome of the Medicinal Plant Catharanthus roseus Unravels the tissue-specific control of the monoterpene indole alkaloid pathway by DNA methylation. Int J Mol Sci, 21, 6028. [Google Scholar]
  • Figueiredo, D.D., Köhler, C. (2018). Auxin: a molecular trigger of seed development. Genes Dev, 32, 479-490. [CrossRef] [PubMed] [Google Scholar]
  • Figueiredo, D.D., Batista, R.A., Roszak, P.J., Köhler, C. (2015). Auxin production couples endosperm development to fertilization. Nat Plants, 1, 15184. [CrossRef] [PubMed] [Google Scholar]
  • Figueiredo, D.D., Batista, R.A., Roszak, P.J., Hennig, L., Köhler, C. (2016). Auxin production in the endosperm drives seed coat development in Arabidopsis. ELife, 5, 20542. [Google Scholar]
  • Gaillochet, C., Lohmann, J.U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development, 142, 2237-2249. [CrossRef] [PubMed] [Google Scholar]
  • Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R., Scheres, B. (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature, 449, 1053-1057. [CrossRef] [PubMed] [Google Scholar]
  • Gallusci, P., Dai, Z., Génard, M., Gauffretau, A., Leblanc-Fournier, N., Richard-Molard, C., Vile, D., Brunel-Muguet, S. (2017). Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci, 22, 610-623. [CrossRef] [PubMed] [Google Scholar]
  • Genitoni, J., Vassaux, D., Delaunay, A., Citerne, S., Portillo Lemus, L., Etienne, M.-P., Renault, D., Stoeckel, S., Barloy, D., Maury, S. (2020). Hypomethylation of the aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala mimics the adaptive transition into the terrestrial morphotype. Physiol Plant, 170, 280-298. [CrossRef] [PubMed] [Google Scholar]
  • Guo, J.-E., Hu, Z., Yu, X., Li, A., Li, F., Wang, Y., Tian, S., Chen, G. (2018). A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Rep, 37, 125-135. [Google Scholar]
  • Harikumar, A., Meshorer, E. (2015). Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep, 16, 1609-1619. [CrossRef] [PubMed] [Google Scholar]
  • He, Y., Li, Z. (2018). Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet, 34, 856-866. [CrossRef] [PubMed] [Google Scholar]
  • Heard, E., Martienssen, R.A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157, 95-109. [CrossRef] [PubMed] [Google Scholar]
  • Hébrard, C., Peterson, D.G., Willems, G., Delaunay, A., Jesson, B., Lefèbvre, M., Barnes, S., Maury, S. (2016). Epigenomics and bolting tolerance in sugar beet genotypes. J Exp Bot, 67, 207-225. [CrossRef] [PubMed] [Google Scholar]
  • Hepworth, J., Dean, C. (2015). Flowering locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol, 168, 1237-1245. [Google Scholar]
  • Herrel, A., Joly, D., Danchin, E. (2020). Epigenetics in ecology and evolution. Funct Ecol, 34, 381-384. [Google Scholar]
  • Herrera, C.M., Bazaga, P. (2013). Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees: Heterophylly and DNA Methylation. Bot J Linnean Soc, 171, 441-452. [CrossRef] [Google Scholar]
  • Ikeuchi, M., Iwase, A., Rymen, B., Harashima, H., Shibata, M., Ohnuma, M., Breuer, C., Morao, A.K., de Lucas, M., De Veylder, L., Goodrich, J., Brady, S. M., Roudier, F., Sugimoto, K. (2015). PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat Plants, 1, 15089. [CrossRef] [PubMed] [Google Scholar]
  • Jiang, D., Berger, F. (2017). DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science, 357, 1146-1149. [Google Scholar]
  • Johannes, F., Porcher, E., Teixeira, F.K., Saliba-Colombani, V., Simon, M., Agier, N., Bulski, A., Albuisson, J., Heredia, F., Audigier, P., Bouchez, D., Dillmann, C., Guerche, P., Hospital, F., Colot, V. (2009). Assessing the impact of transgenerational epigenetic variation on complex traits. PLOS Genet, 5, 1000530. [Google Scholar]
  • Kawakatsu, T., Huang, S.C., Jupe, F., Sasaki, E., Schmitz, R.J., Urich, M.A., Castanon, R., Nery, J.R., Barragan, C., He, Y., Chen, H., Dubin, M., Lee, C.-R., Wang, C., Bemm, F., Becker, C., O’Neil, R., O’Malley, R. C., Quarless, D. X., The 1001 Genomes Consortium, Schork, N.J., Weigel, D., Nordborg, M., Ecker, J.R. (2016). Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell, 166, 492-505. [CrossRef] [PubMed] [Google Scholar]
  • Kooke, R., Johannes, F., Wardenaar, R., Becker, F., Etcheverry, M., Colot, V., Vreugdenhil, D., Keurentjes, J.J.B. (2015). Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell, 27, 337-348. [Google Scholar]
  • Kumar, S.K., Wang, Y., Zhang, X., Cheng, H., Sun, L., He, S., Hao, F. (2020). Redox components: key regulators of epigenetic modifications in plants. Int J Mol Sci, 21, 1419. [Google Scholar]
  • Lachowiec, J., Queitsch, C., Kliebenstein, D.J. (2016). Molecular mechanisms governing differential robustness of development and environmental responses in plants. Ann Bot, 117, 795-809. [CrossRef] [PubMed] [Google Scholar]
  • Lafon-Placette, C., Le Gac, A.-L., Chauveau, D., Segura, V., Delaunay, A., Lesage-Descauses, M.-C., Hummel, I., Cohen, D., Jesson, B., Le Thiec, D., Bogeat-Triboulot, M.-B., Brignolas, F., Maury, S. (2018). Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. J Exp Bot, 69, 537-551. [CrossRef] [PubMed] [Google Scholar]
  • Lafos, M., Kroll, P., Hohenstatt, M.L., Thorpe, F.L., Clarenz, O., Schubert, D. (2011). Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLOS Genet, 7, 1002040. [Google Scholar]
  • Lämke, J., Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol, 18, 124. [Google Scholar]
  • Latzel, V., Zhang, Y., Karlsson Moritz, K., Fischer, M., Bossdorf, O. (2012). Epigenetic variation in plant responses to defence hormones. Ann Bot, 110, 1423-1428. [CrossRef] [PubMed] [Google Scholar]
  • Le Gac, A.-L., Lafon-Placette, C., Chauveau, D., Segura, V., Delaunay, A., Fichot, R., Marron, N., Le Jan, I., Berthelot, A., Bodineau, G., Bastien, J.-C., Brignolas, F., Maury, S. (2018). Winter-dormant shoot apical meristem in poplar trees shows environmental epigenetic memory. J Exp Bot, 69, 4821-4837. [CrossRef] [PubMed] [Google Scholar]
  • Le Gac, A.-L., Lafon-Placette, C., Delaunay, A., Maury, S. (2019). Developmental, genetic and environmental variations of global DNA methylation in the first leaves emerging from the shoot apical meristem in poplar trees. Plant Signal Behav, 14, 159671. [Google Scholar]
  • Ledón-Rettig, C.C. (2013). Ecological epigenetics: an introduction to the symposium. Integr Comp Biol, 53, 307-318. [CrossRef] [PubMed] [Google Scholar]
  • Li, Q.-F., Lu, J., Yu, J.-W., Zhang, C.-Q., He, J.-X., Liu, Q.-Q. (2018). The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochim Biophys Acta Gene Regul Mech, 1861, 561-571. [CrossRef] [PubMed] [Google Scholar]
  • Lisch, D. (2012). How important are transposons for plant evolution? Nat Rev Genet, 14, 49-61. [Google Scholar]
  • Liu, H., Lämke, J., Lin, S., Hung, M.-J., Liu, K.-M., Charng, Y., Bäurle, I. (2018). Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J, 95, 401-413. [CrossRef] [PubMed] [Google Scholar]
  • Liu, X., Wei, X., Sheng, Z., Jiao, G., Tang, S., Luo, J., Hu, P. (2016). Polycomb protein OsFIE2 affects plant height and grain yield in rice. PLOS ONE, 11, 0164748. [Google Scholar]
  • Maher, B. (2008). Personal genomes: The case of the missing heritability. Nat News, 456, 18-21. [CrossRef] [Google Scholar]
  • Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., Seymour, G.B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-circle transcription factor inhibits tomato fruit ripening. Nat Genet, 38, 948-952. [Google Scholar]
  • Marin, P., Genitoni, J., Barloy, D., Maury, S., Gibert, P., Ghalambor, C.K., Vieira, C. (2019). Biological invasion: The influence of the hidden side of the (epi)genome. Funct Ecol, 34, 385-400. [Google Scholar]
  • Matzke, M.A., Mosher, R.A. (2014). RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet, 15, 394-408. [CrossRef] [PubMed] [Google Scholar]
  • Mauch-Mani, B., Baccelli, I., Luna, E., Flors, V. (2017). Defense priming: an adaptive part of induced resistance. Ann Rev Plant Biol, 68, 485-512. [CrossRef] [Google Scholar]
  • Maury, S., Sow, M.D., Le Gac, A.-L., Genitoni, J., Lafon-Placette, C., Mozgova, I. (2019). Phytohormone and chromatin crosstalk: the missing link for developmental plasticity? Front Plant Sci, 10, 115-120. [CrossRef] [PubMed] [Google Scholar]
  • Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95, 805-815. [CrossRef] [PubMed] [Google Scholar]
  • Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., Yamanaka, S. (2009). Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol, 27, 743-745. [CrossRef] [PubMed] [Google Scholar]
  • Morao, A.K., Bouyer, D., Roudier, F. (2016). Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining. Curr Opin Plant Biol, 34, 27-34. [CrossRef] [PubMed] [Google Scholar]
  • Mozgová, I., Muñoz-Viana, R., Hennig, L. (2017). PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis thaliana. PLOS Genet, 13, 1006562. [Google Scholar]
  • Nakayama, H., Sinha, N.R., Kimura, S. (2017). How do plants and phytohormones accomplish heterophylly, leaf phenotypic plasticity, in response to environmental cues. Front Plant Sci, 8, 1717. [CrossRef] [PubMed] [Google Scholar]
  • Nicoglou, A., Merlin, F. (2017). Epigenetics: A way to bridge the gap between biological fields. Stud Hist Philos Biol Biomed Sci, 66, 73­-82. [CrossRef] [PubMed] [Google Scholar]
  • Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L., Valladares, F., van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci, 15, 684-692. [CrossRef] [PubMed] [Google Scholar]
  • Ojolo, S.P., Cao, S., Priyadarshani, S.V.G.N., Li, W., Yan, M., Aslam, M., Zhao, H., Qin, Y. (2018). Regulation of plant growth and development: a review from a chromatin remodeling perspective. Front Plant Sci, 9, 16-28. [CrossRef] [PubMed] [Google Scholar]
  • Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C.W., Rodriguez, L., Belda-Palazon, B., Wagner, D., Rodriguez, P.L. (2016). A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant, 9, 136-147. [CrossRef] [PubMed] [Google Scholar]
  • Pi, L., Aichinger, E., van der Graaff, E., Llavata-Peris, C.I., Weijers, D., Hennig, L., Groot, E., Laux, T. (2015). Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell, 33, 576-588. [CrossRef] [PubMed] [Google Scholar]
  • Pigliucci, M. (1998). Developmental phenotypic plasticity: where internal programming meets the external environment. Curr Opin Plant Biol, 1, 87-91. [CrossRef] [PubMed] [Google Scholar]
  • Pigliucci, M., Phenotypic plasticity: beyond nature and nurture, The Johns Hopkins University Press, 2001, 328 p. [Google Scholar]
  • Reinders, J., Wulff, B.B.H., Mirouze, M., Marí-Ordóñez, A., Dapp, M., Rozhon, W., Bucher, E., Theiler, G., Paszkowski, J. (2009). Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev, 23, 939-950. [CrossRef] [PubMed] [Google Scholar]
  • Richards, E.J. (2011). Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol, 14, 204-209. [CrossRef] [PubMed] [Google Scholar]
  • Richards, C.L., Alonso, C., Becker, C., Bossdorf, O., Bucher, E., Colomé-Tatché, M., Durka, W., Engelhardt, J., Gaspar, B., Gogol-Döring, A., Grosse, I., van Gurp, T.P., Heer, K., Kronholm, I., Lampei, C., Latzel, V., Mirouze, M., Opgenoorth, L., Paun, O., Prohaska, S.J., Rensing, S.A., Stadler, P.F., Trucchi, E., Ullrich, K., Verhoeven, K.J.F. (2017). Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol Lett, 20, 1576-1590. [Google Scholar]
  • Robert-Seilaniantz, A., Navarro, L., Bari, R., Jones, J.D.G. (2007). Pathological hormone imbalances. Curr Opin Plant Biol, 10, 372-379. [CrossRef] [PubMed] [Google Scholar]
  • Roudier, F., Ahmed, I., Bérard, C., Sarazin, A., Mary-Huard, T., Cortijo, S., Bouyer, D., Caillieux, E., Duvernois-Berthet, E., Al-Shikhley, L., Giraut, L., Després, B., Drevensek, S., Barneche, F., Dèrozier, S., Brunaud, V., Aubourg, S., Schnittger, A., Bowler, C., Martin-Magniette, M.-L., Robin, S., Caboche, M., Colot, V. (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis: Organization of the Arabidopsis epigenome. EMBO J, 30, 1928-1938. [CrossRef] [PubMed] [Google Scholar]
  • Sarnowska, E., Gratkowska, D.M., Sacharowski, S.P., Cwiek, P., Tohge, T., Fernie, A.R., Siedlecki, J.A., Koncz, C., Sarnowski, T.J. (2016). The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends Plant Sci, 21, 594-608. [CrossRef] [PubMed] [Google Scholar]
  • Scheres, B. (2007). Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol, 8, 345-354. [CrossRef] [PubMed] [Google Scholar]
  • Schmid, M.W., Heichinger, C., Coman Schmid, D., Guthörl, D., Gagliardini, V., Bruggmann, R., Aluri, S., Aquino, C., Schmid, B., Turnbull, L.A., Grossniklaus, U. (2018). Contribution of epigenetic variation to adaptation in Arabidopsis. Nat Commun, 9, 4446. [Google Scholar]
  • Sow, M.D., Allona, I., Ambroise, C., Conde, D., Fichot, R., Gribkova, S., Jorge, V., Le-Provost, G., Pâques, L., Plomion, C., Salse, J., Sanchez-Rodriguez, L., Segura, V., Tost, J. Maury, S. (2018a). Epigenetics in forest trees: state of the art and potential implications for breeding and management in a context of climate change. Adv Bot Res, 88, 387-453. [Google Scholar]
  • Sow, M.D., Segura, V., Chamaillard, S., Jorge, V., Delaunay, A., Lafon-Placette, C., Fichot, R., Faivre-Rampant, P., Villar, M., Brignolas, F., Maury, S. (2018b). Narrow-sense heritability and PST estimates of DNA methylation in three Populus nigra L. populations under contrasting water availability. Tree Genet Genomes, 14, 78. [Google Scholar]
  • Sow, M.D., Le Gac, A.-L., Fichot, R., Lanciano, S., Delaunay, A., Le Jan, I., Lesage-Descauses, M.-C., Citerne, S., Caius, J., Brunaud, V., Soubigou-Taconnat, L., Cochard, H., Segura, V., Chaparro, C., Grunau, C., Daviaud, C., Tost, J., Brignolas, F., Strauss, S.H., Mirouze, M. Maury, S. (2020). Hypomethylated poplars show higher tolerance to water deficit and highlight a dual role for DNA methylation in shoot meristem: regulation of stress response and genome integrity. BioRxiv, 045328. [Google Scholar]
  • Springer, N.M., Schmitz, R.J. (2017). Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet, 18, 563-575. [CrossRef] [PubMed] [Google Scholar]
  • Taagen, E., Bogdanove, A.J., Sorrells, M.E. (2020). Counting on crossovers: controlled recombination for plant breeding. Trends Plant Sci, 25, 455-465. [CrossRef] [PubMed] [Google Scholar]
  • Tronick, E., Hunter, R.G. (2016). Waddington, dynamic systems, and epigenetics. Front Behav Neurosci, 10, 107. [CrossRef] [PubMed] [Google Scholar]
  • Tucker, M.R., Laux, T. (2007). Connecting the paths in plant stem cell regulation. Trends Cell Biol, 17, 403-410. [Google Scholar]
  • Waddington, C.H., Organisers and genes, The Cambridge University Press, Cambridge, UK, 1940, 166 p. [Google Scholar]
  • Waddington, C.H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563-565. [Google Scholar]
  • West-Eberhard, M.J., Developmental plasticity and evolution, Oxford University Press, 2003, 814 p. [CrossRef] [Google Scholar]
  • Wójcikowska, B., Wójcik, A.M., Gaj, M.D. (2020). Epigenetic regulation of auxin-induced somatic embryogenesis in plants. Int J Mol Sci, 21, 2307. [Google Scholar]
  • Wong, M.M., Chong, G.L., Verslues, P.E. (2017). Epigenetics and RNA processing: connections to drought, salt, and ABA? Methods Mol Biol, 1631, 3-21. [CrossRef] [PubMed] [Google Scholar]
  • Yadav, R.K., Girke, T., Pasala, S., Xie, M., Reddy, G.V. (2009). Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. PNAS, 106, 4941-4946. [CrossRef] [Google Scholar]
  • Yakovlev, I.A., Asante, D.K.A., Fossdal, C.G., Junttila, O., Johnsen, Ø. (2011). Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Sci, 180, 132-139. [CrossRef] [PubMed] [Google Scholar]
  • Yakovlev, I.A., Carneros, E., Lee, Y., Olsen, J.E., Fossdal, C.G. (2016). Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta, 243, 1237-1249. [CrossRef] [PubMed] [Google Scholar]
  • Yamamuro, C., Zhu, J.-K., Yang, Z. (2016). Epigenetic modifications and plant hormone action. Mol Plant, 9, 57-70. [CrossRef] [PubMed] [Google Scholar]
  • Yan, B., Lv, Y., Zhao, C., Wang, X. (2020). Knowing when to silence: roles of polycomb-group proteins in SAM maintenance, root development, and developmental phase transition. Int J Mol Sci, 21, 5871. [Google Scholar]
  • Yang, X., Mackenzie, S.A. (2019). Many facets of dynamic plasticity in plants. Cold Spring Harb Perspect Biol, 11, 034629. [Google Scholar]
  • Yona, A.H., Frumkin, I., Pilpel, Y. (2015). A relay race on the evolutionary adaptation spectrum. Cell, 163, 549-559. [CrossRef] [PubMed] [Google Scholar]
  • Yu, X., Li, L., Li, L., Guo, M., Chory, J., Yin, Y. (2008). Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. PNAS, 105, 7618-7623. [CrossRef] [Google Scholar]
  • Zhang, H., Lang, Z., Zhu, J.-K. (2018). Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 19, 489­-506. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Y.-Y., Fischer, M., Colot, V., Bossdorf, O. (2013). Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol, 197, 314­-322. [CrossRef] [PubMed] [Google Scholar]
  • Zhao, H., Winogradoff, D., Dalal, Y., Papoian, G.A. (2019). The Oligomerization Landscape of Histones. Biophys J, 116, 1845-1855. [CrossRef] [PubMed] [Google Scholar]
  • Zheng, X., Hou, H., Zhang, H., Yue, M., Hu, Y., Li, L. (2018). Histone acetylation is involved in GA-mediated 45S rDNA decondensation in maize aleurone layers. Plant Cell Rep, 37, 115-123. [Google Scholar]
  • Zhu, R., Shevchenko, O., Ma, C., Maury, S., Freitag, M., Strauss, S.H. (2013). Poplars with a PtDDM1-RNAi transgene have reduced DNA methylation and show aberrant post-dormancy morphology. Planta, 237, 1483-1493. [CrossRef] [PubMed] [Google Scholar]
  • Zuo, J., Niu, Q.-W., Frugis, G., Chua, N.-H. (2002). The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 30, 349-359. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.