Accès gratuit
Numéro |
Biologie Aujourd’hui
Volume 215, Numéro 1-2, 2021
|
|
---|---|---|
Page(s) | 45 - 57 | |
DOI | https://doi.org/10.1051/jbio/2021006 | |
Publié en ligne | 16 août 2021 |
- Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., Dave, S., Hurt, E.M., Tan, B., Zhao, H., Stephens, O., Santra, M., Williams, D.R., Dang, L., Barlogie, B., Shaughnessy, J.D. Jr, Kuehl, W.M., Staudt, L.M. (2007). Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell, 12, 115-130. [CrossRef] [PubMed] [Google Scholar]
- Babu, J.R., Geetha, T., Wooten, M.W. (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem, 94, 192-203. [CrossRef] [PubMed] [Google Scholar]
- Balaji, V., Hoppe, T. (2020). Regulation of E3 ubiquitin ligases by homotypic and heterotypic assembly. F1000Res, 9. [Google Scholar]
- Bang, S., Kaur, S., Kurokawa, M. (2019). Regulation of the p53 family proteins by the ubiquitin proteasomal pathway. Int J Mol Sci, 21, https://doi.org/10.3390/ijms21010261. [CrossRef] [Google Scholar]
- Bard, J.A.M., Goodall, E.A., Greene, E.R., Jonsson, E., Dong, K.C., Martin, A. (2018). Structure and function of the 26S proteasome. Annu Rev Biochem, 87, 697-724. [CrossRef] [PubMed] [Google Scholar]
- Bencivenga, D., Caldarelli, I., Stampone, E., Mancini, F.P., Balestrieri, M.L., Della Ragione, F., Borriello, A. (2017). p27(Kip1) and human cancers: a reappraisal of a still enigmatic protein. Cancer Lett, 403, 354-365. [CrossRef] [PubMed] [Google Scholar]
- Boisson, B., Laplantine, E., Prando, C., Giliani, S., Israelsson, E., Xu, Z., Abhyankar, A., Israel, L., Trevejo-Nunez, G., Bogunovic, D., Cepika A.-M., MacDuff D., Chrabieh M., Hubeau M., Bajolle, F., Debré, M., Mazzolari, E., Vairo, D., Agou, F., Virgin, H.W., Bossuyt, X., Rambaud, C., Facchetti, F., Bonnet, D., Quartier, P., Fournet, J.-C., Pascual, V., Chaussabel, D., Notarangelo, L.D., Puel, A., Israël, A., Casanova, J.-L., Picard, C. (2012). Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol, 13, 1178-1186. [CrossRef] [PubMed] [Google Scholar]
- Bulatov, E., Ciulli, A. (2015). Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J, 467, 365-386. [CrossRef] [PubMed] [Google Scholar]
- Carabet, L.A., Rennie, P.S., Cherkasov, A. (2018). Therapeutic inhibition of Myc in cancer. Structural bases and computer-aided drug discovery approaches. Int J Mol Sci, 20, 120. [CrossRef] [Google Scholar]
- Cardote, T.A.F., Gadd, M.S., Ciulli, A. (2017). Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure, 25, 901-911, e903. [CrossRef] [PubMed] [Google Scholar]
- Ceccarelli, D.F., Tang, X., Pelletier, B., Orlicky, S., Xie, W., Plantevin, V., Neculai, D., Chou, Y.C., Ogunjimi, A., Al-Hakim, A., Varelas, X., Koszela, J., Wasney, G.A., Vedadi, M., Dhe-Paganon, S., Cox, S., Xu, S., Lopez-Girona, A., Mercurio, F., Wrana, J., Durocher, D., Meloche, S., Webb, D.R., Tyers, M., Sicheri, F. (2011). An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell, 145, 1075-1087. [CrossRef] [PubMed] [Google Scholar]
- Cengiz Seval, G., Beksac, M. (2018). The safety of bortezomib for the treatment of multiple myeloma. Expert Opin Drug Saf, 17, 953-962. [CrossRef] [PubMed] [Google Scholar]
- Clarke, B.A., Drujan, D., Willis, M.S., Murphy, L.O., Corpina, R.A., Burova, E., Rakhilin, S.V., Stitt, T.N., Patterson, C., Latres, E., Glass, D.J. (2007). The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab, 6, 376-385. [CrossRef] [PubMed] [Google Scholar]
- Cohen, P., Strickson, S. (2017). The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ, 24, 1153-1159. [CrossRef] [PubMed] [Google Scholar]
- Cohen, S., Zhai, B., Gygi, S.P., Goldberg, A.L. (2012). Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol, 198, 575-589. [CrossRef] [PubMed] [Google Scholar]
- Deshaies, R.J., Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem, 78, 399-434. [CrossRef] [PubMed] [Google Scholar]
- DiBello, A., Datta, A.B., Zhang, X., Wolberger, C. (2016). Role of E2-RING interactions in governing RNF4-mediated substrate ubiquitination. J Mol Biol, 428, 4639-4650. [CrossRef] [PubMed] [Google Scholar]
- Doss-Pepe, E.W., Chen, L., Madura, K. (2005). Alpha-synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. J Biol Chem, 280, 16619-16624. [CrossRef] [PubMed] [Google Scholar]
- Dove, K.K., Klevit, R.E. (2017). RING-between-RING E3 ligases: emerging themes amid the variations. J Mol Biol, 429, 3363-3375. [CrossRef] [PubMed] [Google Scholar]
- Duffy, M.J., Synnott, N.C., O’Grady, S., Crown, J. (2020). Targeting p53 for the treatment of cancer. Semin Cancer Biol, S1044-579X(20)30160-7. [Google Scholar]
- Einsele, H. (2014). Bortezomib. Recent results. Cancer Res, 201, 325–345. [Google Scholar]
- Esposito, D., Koliopoulos, M.G., Rittinger, K. (2017). Structural determinants of TRIM protein function. Biochem Soc Trans, 45, 183-191. [CrossRef] [PubMed] [Google Scholar]
- Fabris, L., Berton, S., Pellizzari, I., Segatto, I., D’Andrea, S., Armenia, J., Bomben, R., Schiappacassi, M., Gattei, V., Philips, M.R., Vecchione, A., Belletti, B., Baldassarre, G. (2015). p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability. Proc Natl Acad Sci USA, 112, 13916-13921. [CrossRef] [Google Scholar]
- French, M.E., Klosowiak, J.L., Aslanian, A., Reed, S.I., Yates, J.R., 3rd, Hunter, T. (2017). Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. J Biol Chem, 292, 10398-10413. [CrossRef] [PubMed] [Google Scholar]
- Fu, L., Cui, C.P., Zhang, X., Zhang, L. (2020). The functions and regulation of Smurfs in cancers. Semin Cancer Biol, 67, 102-116. [CrossRef] [PubMed] [Google Scholar]
- George, A.J., Hoffiz, Y.C., Charles, A.J., Zhu, Y., Mabb, A.M. (2018). A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front Genet, 9, 29. [CrossRef] [PubMed] [Google Scholar]
- Glickman, M.H., Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82, 373-428. [CrossRef] [PubMed] [Google Scholar]
- Grasberger, B.L., Lu, T., Schubert, C., Parks, D.J., Carver, T.E., Koblish, H.K., Cummings, M.D., LaFrance, L.V., Milkiewicz, K.L., Calvo, R.R., Maguire, D., Lattanze, J., Franks, C.F., Zhao, S., Ramachandren, K., Bylebyl, G.R., Zhang, M., Manthey, C.L., Petrella, E.C., Pantoliano, M.W., Deckman, I.C., Spurlino, J.C., Maroney, A.C., Tomczuk, B.E., Molloy, C.J., Bone, R.F. (2005). Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem, 48, 909-912. [CrossRef] [PubMed] [Google Scholar]
- Han, Z., Lu, J., Liu, Y., Davis, B., Lee, M.S., Olson, M.A., Ruthel, G., Freedman, B.D., Schnell, M.J., Wrobel, J.E., Reitz, A.B., Harty, R.N. (2014). Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J Virol, 88, 7294-7306. [CrossRef] [PubMed] [Google Scholar]
- Harrigan, J.A., Jacq, X., Martin, N.M., Jackson, S.P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov, 17, 57-78. [CrossRef] [PubMed] [Google Scholar]
- Hock, A.K., Vousden, K.H. (2014). The role of ubiquitin modification in the regulation of p53. Biochim Biophys Acta, 1843, 137-149. [CrossRef] [PubMed] [Google Scholar]
- Hou, H., Sun, D., Zhang, X. (2019). The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int, 19, 216. [CrossRef] [PubMed] [Google Scholar]
- Jain, A.K., Barton, M.C. (2010). Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther, 10, 665-672. [CrossRef] [PubMed] [Google Scholar]
- Kaiser, S.E., Riley, B.E., Shaler, T.A., Trevino, R.S., Becker, C.H., Schulman, H., Kopito, R.R. (2011). Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods, 8, 691-696. [CrossRef] [PubMed] [Google Scholar]
- Karbowski, M., Youle, R.J. (2011). Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol, 23, 476-482. [CrossRef] [PubMed] [Google Scholar]
- Kedar, V., McDonough, H., Arya, R., Li, H.H., Rockman, H.A., Patterson, C. (2004). Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA, 101, 18135-18140. [CrossRef] [Google Scholar]
- Khatri, N., Man, H.Y. (2019). The autism and Angelman syndrome protein Ube3A/E6AP: the gene, E3 ligase ubiquitination targets and neurobiological functions. Front Mol Neurosci, 12, 109. [CrossRef] [PubMed] [Google Scholar]
- Kim, H.T., Goldberg, A.L. (2017). The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis. J Biol Chem, 292, 9830-9839. [CrossRef] [PubMed] [Google Scholar]
- Kim, T., Bae, S.C., Kang, C. (2020). Synergistic activation of NF-kappaB by TNFAIP3 (A20) reduction and UBE2L3 (UBCH7) augment that synergistically elevate lupus risk. Arthritis Res Ther, 22, 93. [CrossRef] [PubMed] [Google Scholar]
- Knipscheer, P., Raschle, M., Smogorzewska, A., Enoiu, M., Ho, T.V., Scharer, O.D., Elledge, S.J., Walter, J.C. (2009). The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science, 326, 1698-1701. [CrossRef] [PubMed] [Google Scholar]
- Koliopoulos, M.G., Esposito, D., Christodoulou, E., Taylor, I.A., Rittinger, K. (2016). Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J, 35, 1204-1218. [CrossRef] [PubMed] [Google Scholar]
- Komander, D., Clague, M.J., Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol, 10, 550-563. [CrossRef] [PubMed] [Google Scholar]
- Konopleva, M., Martinelli, G., Daver, N., Papayannidis, C., Wei, A., Higgins, B., Ott, M., Mascarenhas, J., Andreeff, M. (2020). MDM2 inhibition: an important step forward in cancer therapy. Leukemia, 34, 2858-2874. [CrossRef] [PubMed] [Google Scholar]
- Kontaxi, C., Piccardo, P., Gill, A.C. (2017). Lysine-directed post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Front Mol Biosci, 4, 56. [CrossRef] [PubMed] [Google Scholar]
- Kumar, B., Lecompte, K.G., Klein, J.M., Haas, A.L. (2010). Ser(120) of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3{alpha}/Ubr1. J Biol Chem, 285, 41300-41309. [CrossRef] [PubMed] [Google Scholar]
- Kumar, D., Kumar, P. (2019). Integrated mechanism of lysine 351, PARK2, and STUB1 in AbetaPP ubiquitination. J Alzheimers Dis, 68, 1125-1150. [CrossRef] [PubMed] [Google Scholar]
- Kuo, C.L., Goldberg, A.L. (2017). Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc Natl Acad Sci USA, 114, E3404-E3413. [CrossRef] [Google Scholar]
- Lagirand-Cantaloube, J., Offner, N., Csibi, A., Leibovitch, M.P., Batonnet-Pichon, S., Tintignac, L.A., Segura, C.T., Leibovitch, S.A. (2008). The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J, 27, 1266-1276. [CrossRef] [PubMed] [Google Scholar]
- Lee, J.T., Gu, W. (2010). The multiple levels of regulation by p53 ubiquitination. Cell Death Differ, 17, 86-92. [CrossRef] [PubMed] [Google Scholar]
- Lee, S., Challa-Malladi, M., Bratton, S.B., Wright, C.W. (2014). Nuclear factor-kappaB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem, 289, 30680-30689. [CrossRef] [PubMed] [Google Scholar]
- Lehmann, A.R. (2003). DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie, 85, 1101-1111. [CrossRef] [PubMed] [Google Scholar]
- Lemos, A., Gomes, A.S., Loureiro, J.B., Brandao, P., Palmeira, A., Pinto, M.M.M., Saraiva, L., Sousa, M.E. (2019). Synthesis, biological evaluation, and in silico studies of novel aminated xanthones as potential p53-activating agents. Molecules, 24, 1975. [CrossRef] [Google Scholar]
- Li, H., Fang, Y., Niu, C., Cao, H., Mi, T., Zhu, H., Yuan, J., Zhu, J. (2018a). Inhibition of cIAP1 as a strategy for targeting c-MYC-driven oncogenic activity. Proc Natl Acad Sci USA, 115, E9317-E9324. [CrossRef] [Google Scholar]
- Li, X., Elmira, E., Rohondia, S., Wang, J., Liu, J., Dou, Q.P. (2018b). A patent review of the ubiquitin ligase system: 2015-2018. Expert Opin Ther Pat, 28, 919-937. [CrossRef] [PubMed] [Google Scholar]
- Malecka, K.A., Fera, D., Schultz, D.C., Hodawadekar, S., Reichman, M., Donover, P.S., Murphy, M.E., Marmorstein, R. (2014). Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem Biol, 9, 1603-1612. [CrossRef] [PubMed] [Google Scholar]
- Mattiroli, F., Vissers, J.H., van Dijk, W.J., Ikpa, P., Citterio, E., Vermeulen, W., Marteijn, J.A., Sixma, T.K. (2012). RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150, 1182-1195. [CrossRef] [PubMed] [Google Scholar]
- Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271-275. [CrossRef] [PubMed] [Google Scholar]
- Metzger, M.B., Pruneda, J.N., Klevit, R.E., Weissman, A.M. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta, 1843, 47-60. [CrossRef] [PubMed] [Google Scholar]
- Michelle, C., Vourc’h, P., Mignon, L., Andres, C.R. (2009). What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor ? J Mol Evol, 68, 616-628. [CrossRef] [PubMed] [Google Scholar]
- Montesinos, P., Beckermann, B.M., Catalani, O., Esteve, J., Gamel, K., Konopleva, M.Y., Martinelli, G., Monnet, A., Papayannidis, C., Park, A., Récher, C., Rodríguez-Veiga, R., Röllig, C., Vey, N., Wei, A.H., Yoon, S.-S., Fenaux, P. (2020). MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncol, 16, 807-815. [CrossRef] [PubMed] [Google Scholar]
- Mund, T., Lewis, M.J., Maslen, S., Pelham, H.R. (2014). Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc Natl Acad Sci USA, 111, 16736-16741. [CrossRef] [Google Scholar]
- Murayama, K., Kato-Murayama, M., Itoh, Y., Miyazono, K., Miyazawa, K., Shirouzu, M. (2020). Structural basis for inhibitory effects of Smad7 on TGF-beta family signaling. J Struct Biol, 212, 107661. [CrossRef] [PubMed] [Google Scholar]
- Nakasone, M.A., Livnat-Levanon, N., Glickman, M.H., Cohen, R.E., Fushman, D. (2013). Mixed-linkage ubiquitin chains send mixed messages. Structure, 21, 727-740. [CrossRef] [PubMed] [Google Scholar]
- Namuduri, A.V., Heras, G., Lauschke, V.M., Vitadello, M., Traini, L., Cacciani, N., Gorza, L., Gastaldello, S. (2020). Expression of SUMO enzymes is fiber type dependent in skeletal muscles and is dysregulated in muscle disuse. FASEB J, 34, 2269-2286. [CrossRef] [PubMed] [Google Scholar]
- Nie, M., Boddy, M.N. (2016). Cooperativity of the SUMO and ubiquitin pathways in genome stability. Biomolecules, 6, 14. [CrossRef] [PubMed] [Google Scholar]
- Offensperger, F., Muller, F., Jansen, J., Hammler, D., Gotz, K.H., Marx, A., Sirois, C.L., Chamberlain, S.J., Stengel, F., Scheffner, M. (2020). Identification of small-molecule activators of the ubiquitin ligase E6AP/UBE3A and Angelman syndrome-derived E6AP/UBE3A variants. Cell Chem Biol, 27, 1510-1520, e1516. [CrossRef] [PubMed] [Google Scholar]
- Olzmann, J.A., Chin, L.S. (2008). Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy, 4, 85-87. [CrossRef] [PubMed] [Google Scholar]
- Pancheri, E., Guglielmi, V., Wilczynski, G.M., Malatesta, M., Tonin, P., Tomelleri, G., Nowis, D., Vattemi, G. (2020). Non-hematologic toxicity of bortezomib in multiple myeloma: the neuromuscular and cardiovascular adverse effects. Cancers (Basel), 12, https://doi.org/10.3390/cancers12092540. [CrossRef] [Google Scholar]
- Pao, K.C., Wood, N.T., Knebel, A., Rafie, K., Stanley, M., Mabbitt, P.D., Sundaramoorthy, R., Hofmann, K., van Aalten, D.M.F., Virdee, S. (2018). Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature, 556, 381-385. [CrossRef] [PubMed] [Google Scholar]
- Park, C.W., Ryu, K.Y. (2014). Cellular ubiquitin pool dynamics and homeostasis. BMB Rep, 47, 475-482. [CrossRef] [PubMed] [Google Scholar]
- Peris-Moreno, D., Cussonneau, L., Combaret, L., Polge, C., Taillandier, D. (2021). Ubiquitin ligases at the heart of skeletal muscle atrophy control. Molecules, 26, 407. [CrossRef] [Google Scholar]
- Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., Kim, J., Dillmann, W.H., Browne, S.E., Hall, A., Voellmy, R., Tsuboi, Y., Dawson, T.M., Wolozin, B., Hardy, J., Hutton, M. (2004). CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet, 13, 703-714. [CrossRef] [PubMed] [Google Scholar]
- Pines, J. (2011). Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol, 12, 427-438. [CrossRef] [PubMed] [Google Scholar]
- Polge, C., Attaix, D., Taillandier, D. (2015). Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol, 6, 59. [CrossRef] [PubMed] [Google Scholar]
- Polge, C., Heng, A.E., Jarzaguet, M., Ventadour, S., Claustre, A., Combaret, L., Bechet, D., Matondo, M., Uttenweiler-Joseph, S., Monsarrat, B., Attaix, D., Taillandier, D. (2011). Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J, 25, 3790-3802. [CrossRef] [PubMed] [Google Scholar]
- Polge, C., Uttenweiler-Joseph, S., Leulmi, R., Heng, A.E., Burlet-Schiltz, O., Attaix, D., Taillandier, D. (2013). Deciphering the ubiquitin proteome: limits and advantages of high throughput global affinity purification-mass spectrometry approaches. Int J Biochem Cell Biol, 45, 2136-2146. [CrossRef] [PubMed] [Google Scholar]
- Polge, C., Cabantous, S., Deval, C., Claustre, A., Hauvette, A., Bouchenot, C., Aniort, J., Bechet, D., Combaret, L., Attaix, D., Taillandier, D. (2018). A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate. J Cachexia Sarcopenia Muscle, 9, 129-145. [CrossRef] [PubMed] [Google Scholar]
- Quartararo, A.J., Gates, Z.P., Somsen, B.A., Hartrampf, N., Ye, X., Shimada, A., Kajihara, Y., Ottmann, C., Pentelute, B.L. (2020). Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat Commun, 11, 3183. [CrossRef] [PubMed] [Google Scholar]
- Quirit, J.G., Lavrenov, S.N., Poindexter, K., Xu, J., Kyauk, C., Durkin, K.A., Aronchik, I., Tomasiak, T., Solomatin, Y.A., Preobrazhenskaya, M.N., Firestone, G.L. (2017). Indole-3-carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells. Biochem Pharmacol, 127, 13-27. [CrossRef] [PubMed] [Google Scholar]
- Rizk, J., Kaplinsky, J., Agerholm, R., Kadekar, D., Ivars, F., Agace, W.W., Wong, W.W., Szucs, M.J., Myers, S.A., Carr, S.A., Waisman, A., Bekiaris, V. (2019). SMAC mimetics promote NIK-dependent inhibition of CD4(+) TH17 cell differentiation. Sci Signal, 12, https://doi.org/10.1126/scisignal.aaw3469. [CrossRef] [PubMed] [Google Scholar]
- Rotin, D., Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol, 10, 398-409. [CrossRef] [PubMed] [Google Scholar]
- Rubio, I., Rodriguez-Navarro, J.A., Tomas-Zapico, C., Ruiz, C., Casarejos, M.J., Perucho, J., Gomez, A., Rodal, I., Lucas, J.J., Mena, M.A., García de Yébenes, J. (2009). Effects of partial suppression of parkin on huntingtin mutant R6/1 mice. Brain Res, 1281, 91-100. [CrossRef] [PubMed] [Google Scholar]
- Rui, L., Yuan, M., Frantz, D., Shoelson, S., White, M.F. (2002). SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem, 277, 42394-42398. [CrossRef] [PubMed] [Google Scholar]
- Sarcevic, B., Mawson, A., Baker, R.T., Sutherland, R.L. (2002). Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J, 21, 2009-2018. [CrossRef] [PubMed] [Google Scholar]
- Scott, K., Hayden, P.J., Will, A., Wheatley, K., Coyne, I. (2016). Bortezomib for the treatment of multiple myeloma. Cochrane Database Syst Rev, 4, CD010816. [PubMed] [Google Scholar]
- Seth, B., Yadav, A., Agarwal, S., Tiwari, S.K., Chaturvedi, R.K. (2017). Inhibition of the transforming growth factor-beta/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J Biol Chem, 292, 19423-19440. [CrossRef] [PubMed] [Google Scholar]
- Sharma, A., Alswillah, T., Singh, K., Chatterjee, P., Willard, B., Venere, M., Summers, M.K., Almasan, A. (2018). USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination. Autophagy, 14, 1976-1990. [CrossRef] [PubMed] [Google Scholar]
- Skalniak, L., Surmiak, E., Holak, T.A. (2019). A therapeutic patent overview of MDM2/X-targeted therapies (2014–2018). Expert Opin Ther Pat, 29, 151-170. [CrossRef] [PubMed] [Google Scholar]
- Sluimer, J., Distel, B. (2018). Regulating the human HECT E3 ligases. Cell Mol Life Sci, 75, 3121-3141. [CrossRef] [PubMed] [Google Scholar]
- Song, J.J., Szczepanski, M.J., Kim, S.Y., Kim, J.H., An, J.Y., Kwon, Y.T., Alcala, M.A. Jr., Bartlett, D.L., Lee, Y.J. (2010). c-Cbl-mediated degradation of TRAIL receptors is responsible for the development of the early phase of TRAIL resistance. Cell Signal, 22, 553-563. [CrossRef] [PubMed] [Google Scholar]
- Song, R., Peng, W., Zhang, Y., Lv, F., Wu, H.K., Guo, J., Cao, Y., Pi, Y., Zhang, X., Jin, L., Zhang, M, Jiang, P, Liu, F, Meng, S, Zhang, X, Jiang, P, Cao, CM, Xiao, RP. (2013). Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature, 494, 375-379. [CrossRef] [PubMed] [Google Scholar]
- Soss, S.E., Klevit, R.E., Chazin, W.J. (2013). Activation of UbcH5c∼Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B. Biochemistry, 52, 2991-2999. [CrossRef] [PubMed] [Google Scholar]
- Spratt, D.E., Martinez-Torres, R.J., Noh, Y.J., Mercier, P., Manczyk, N., Barber, K.R., Aguirre, J.D., Burchell, L., Purkiss, A., Walden, H., Shaw, G.S. (2013). A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease. Nat Commun, 4, 1983. https://doi.org/10.1038/ncomms2983. [CrossRef] [PubMed] [Google Scholar]
- Sugeno, N., Hasegawa, T., Tanaka, N., Fukuda, M., Wakabayashi, K., Oshima, R., Konno, M., Miura, E., Kikuchi, A., Baba, T., Anan, T., Nakao, M., Geisler, S., Aoki, M., Takeda, A. (2014). Lys-63-linked ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized alpha-synuclein. J Biol Chem, 289, 18137-18151. [CrossRef] [PubMed] [Google Scholar]
- Taillandier, D., Polge, C. (2019). Skeletal muscle atrogenes: From rodent models to human pathologies. Biochimie, 166, 251-269. [CrossRef] [PubMed] [Google Scholar]
- Takedachi, A., Saijo, M., Tanaka, K. (2010). DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA. Mol Cell Biol, 30, 2708-2723. [CrossRef] [PubMed] [Google Scholar]
- Tan, W., van Twest, S., Leis, A., Bythell-Douglas, R., Murphy, V.J., Sharp, M., Parker, M.W., Crismani, W., Deans, A.J. (2020). Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays. Elife, 9, https://doi.org/10.7554/eLife.54128. [PubMed] [Google Scholar]
- Tian, M., Zeng, T., Liu, M., Han, S., Lin, H., Lin, Q., Li, L., Jiang, T., Li, G., Lin, H., Jiang, T., Li, G., Lin, H., Zhang, T., Kang, Q., Deng, X., Wang, H.-R. (2019). A cell-based high-throughput screening method based on a ubiquitin-reference technique for identifying modulators of E3 ligases. J Biol Chem, 294, 2880-2891. [CrossRef] [PubMed] [Google Scholar]
- Tintignac, L.A., Lagirand, J., Batonnet, S., Sirri, V., Leibovitch, M.P., Leibovitch, S.A. (2005). Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem, 280, 2847-2856. [CrossRef] [PubMed] [Google Scholar]
- Tomko, R.J. Jr., Hochstrasser, M. (2013). Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem, 82, 415-445. [CrossRef] [PubMed] [Google Scholar]
- Trotman, L.C., Wang, X., Alimonti, A., Chen, Z., Teruya-Feldstein, J., Yang, H., Pavletich, N.P., Carver, B.S., Cordon-Cardo, C., Erdjument-Bromage, H., Tempst, P, Chi, SG, Kim, HJ, Misteli, T, Jiang, X, Pandolfi, PP. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 128, 141-156. [CrossRef] [PubMed] [Google Scholar]
- van Wijk, S.J., Timmers, H.T. (2010). The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J, 24, 981-993. [CrossRef] [PubMed] [Google Scholar]
- Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., Liu, E.A. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 303, 844-848. [CrossRef] [PubMed] [Google Scholar]
- Velasco, R., Alberti, P., Bruna, J., Psimaras, D., Argyriou, A.A. (2019). Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst, 24(Suppl 2), S52-S62. [CrossRef] [PubMed] [Google Scholar]
- Wade, M., Li, Y.C., Wahl, G.M. (2013). MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer, 13, 83-96. [CrossRef] [PubMed] [Google Scholar]
- Wagner, S.A., Beli, P., Weinert, B.T., Nielsen, M.L., Cox, J., Mann, M., Choudhary, C. (2011). A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics, 10, M111 013284. [CrossRef] [PubMed] [Google Scholar]
- Walsh, M.C., Kim, G.K., Maurizio, P.L., Molnar, E.E., Choi, Y. (2008). TRAF6 autoubiquitinylation-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One, 3, e4064. [CrossRef] [PubMed] [Google Scholar]
- Wang, B., Merillat, S.A., Vincent, M., Huber, A.K., Basrur, V., Mangelberger, D., Zeng, L., Elenitoba-Johnson, K., Miller, R.A., Irani, D.N., Andrzej A., Dlugosz, A.A., Schnell, S., Scaglione, K.M., Paulson, H.L. (2016). Loss of the ubiquitin-conjugating enzyme UBE2W results in susceptibility to early postnatal lethality and defects in skin, immune, and male reproductive systems. J Biol Chem, 291, 3030-3042. [CrossRef] [PubMed] [Google Scholar]
- Wang, M., Guo, L., Wu, Q., Zeng, T., Lin, Q., Qiao, Y., Wang, Q., Liu, M., Zhang, X., Ren, L, Zhang, S., Pei, Y., Yin, Z., Ding, F., Wang, H.R. (2014). ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat Commun, 5, 4901. [CrossRef] [PubMed] [Google Scholar]
- Wang, S., Adrianto, I., Wiley, G.B., Lessard, C.J., Kelly, J.A., Adler, A.J., Glenn, S.B., Williams, A.H., Ziegler, J.T., Comeau, M.E., Marion, M.C. Wakeland, B.E., Liang, C., Kaufman, K.M., Guthridge, J.M., Alarcón-Riquelme, M.E., BIOLUPUS and GENLES Networks ; Alarcón, G.S., Anaya, J.-M., Bae, S.-C., Kim, J.-H., Joo, Y.B., Boackle, S.A., Brown, E.E., Petri, M.A., Ramsey-Goldman, R., Reveille, J.D., Vilá, L.M., Criswell, L.A., Edberg, J.C., Freedman, B.I., Gilkeson, G.S., Jacob, C.O., James, J.A., Kamen, D.L., Kimberly, R.P., Martin, J., Merrill, J.T., Niewold, T.B., Pons-Estel, B.A., Scofield, R.H., Stevens, A.M., Tsao, B.P., Vyse, T.J., Langefeld, C.D., Harley, J.B., Wakeland, E.K., Moser, K.L., Montgomery, C.G., Gaffney, P.M. (2012). A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun, 13, 380-387. [CrossRef] [PubMed] [Google Scholar]
- Wang, S., Zhao, Y., Aguilar, A., Bernard, D., Yang, C.Y. (2017). Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb Perspect Med, 7(5): a026245. [CrossRef] [PubMed] [Google Scholar]
- Wang, Y., Argiles-Castillo, D., Kane, E.I., Zhou, A., Spratt, D.E. (2020). HECT E3 ubiquitin ligases – Emerging insights into their biological roles and disease relevance. J Cell Sci, 133, https://doi.org/10.1242/jcs.228072. [Google Scholar]
- Watt, J.E., Hughes, G.R., Walpole, S., Monaco, S., Stephenson, G.R., Bulman Page, P.C., Hemmings, A.M., Angulo, J., Chantry, A. (2018). Discovery of small molecule WWP2 ubiquitin ligase inhibitors. Chemistry, 24, 17677-17680. [CrossRef] [PubMed] [Google Scholar]
- Weber, J., Polo, S., Maspero, E. (2019). HECT E3 ligases: a tale with multiple facets. Front Physiol, 10, 370. [CrossRef] [PubMed] [Google Scholar]
- Wenzel, D.M., Stoll, K.E., Klevit, R.E. (2011). E2s: structurally economical and functionally replete. Biochem J, 433, 31-42. [CrossRef] [PubMed] [Google Scholar]
- Witt, A., Vucic, D. (2017). Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death Differ, 24, 1160-1171. [CrossRef] [PubMed] [Google Scholar]
- Wu, K., Chong, R.A., Yu, Q., Bai, J., Spratt, D.E., Ching, K., Lee, C., Miao, H., Tappin, I., Hurwitz, J., Zheng, N., Shaw, G.S., Sun, Y., Felsenfeld, D.P., Sanchez, R., Jun-Zheng, N., Pan, Z.-Q. (2016). Suramin inhibits cullin-RING E3 ubiquitin ligases. Proc Natl Acad Sci USA, 113, E2011-2018. [CrossRef] [Google Scholar]
- Wu, W., Koike, A., Takeshita, T., Ohta, T. (2008). The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div, 3, 1. [CrossRef] [PubMed] [Google Scholar]
- Xia, Y., Pao, G.M., Chen, H.W., Verma, I.M., Hunter, T. (2003). Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem, 278, 5255-5263. [CrossRef] [PubMed] [Google Scholar]
- Yang, W.L., Zhang, X., Lin, H.K. (2010). Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene, 29, 4493-4503. [CrossRef] [PubMed] [Google Scholar]
- Zhang, X., Linder, S., Bazzaro, M. (2020a). Drug development targeting the ubiquitin-proteasome system (UPS) for the treatment of human cancers. Cancers (Basel), 12, 902. [Google Scholar]
- Zhang, X., Shi, S., Su, Y., Yang, X., He, S., Yang, X., Wu, J., Zhang, J., Rao, F. (2020b). Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat. J Biol Chem, 295, 10281-10292. [PubMed] [Google Scholar]
- Zheng, N., Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 86, 129-157. [PubMed] [Google Scholar]
- Zhu, X., Li, T., Niu, X., Chen, L., Ge, C. (2020). Identification of UBE2T as an independent prognostic biomarker for gallbladder cancer. Oncol Lett, 20, 44. [PubMed] [Google Scholar]
- Zinngrebe, J., Montinaro, A., Peltzer, N., Walczak, H. (2014). Ubiquitin in the immune system. EMBO Rep, 15, 28-45. [PubMed] [Google Scholar]
- Zucchelli, S., Marcuzzi, F., Codrich, M., Agostoni, E., Vilotti, S., Biagioli, M., Pinto, M., Carnemolla, A., Santoro, C., Gustincich, S., Persichetti, F. (2011). Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its atypical ubiquitination to enhance aggregate formation. J Biol Chem, 286, 25108-25117. [PubMed] [Google Scholar]
- Zuo, C., Sheng, X., Ma, M., Xia, M., Ouyang, L. (2016). ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system. Oncotarget, 7, 74393-74409. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.