Numéro |
Biologie Aujourd’hui
Volume 215, Numéro 1-2, 2021
|
|
---|---|---|
Page(s) | 25 - 43 | |
DOI | https://doi.org/10.1051/jbio/2021007 | |
Publié en ligne | 16 août 2021 |
- Adjei, A.A. (2006). What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J Clin Oncol, 24, 4054-4055. [PubMed] [Google Scholar]
- Alabi, S.B., Crews, C.M. (2021). Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem, 296, 100647. [PubMed] [Google Scholar]
- An, S., Fu, L. (2018). Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedecine, 36, 553-562. [Google Scholar]
- Bai, L., Zhou, H., Xu, R., Zhao, Y., Chinnaswamy, K., McEachern, D., Chen, J., Yang, C.Y., Liu, Z., Wang, M., Liu, L., Jiang, H., Wen, B., Kumar, P., Meagher, J.L., Sun, D., Stuckey, J.A., Wang, S.A. (2019). Potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 36, 498-511.e1. [PubMed] [Google Scholar]
- Banik, S.M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N.M., Bertozzi C.R., (2020). Lysosome-targeting chimeras for degradation of extracellular proteins. Nature, 584, 291-297. [PubMed] [Google Scholar]
- Blaquiere, N., Villemure, E., Staben, S.T. (2020). Medicinal chemistry of inhibiting RING-type E3 ubiquitin ligases. J Med Chem, 63, 7957-7985. [PubMed] [Google Scholar]
- Bond, M.J., Crews, C.M. (2021). Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RCS Chem Biol. DOI: 10.1039/D1CB00011J. [Google Scholar]
- Bondeson, D.P., Mares, A., Smith, I.E.D., Ko, E., Campos, S., Miah, A.H., Mulholland, K.E., Routly, N., Buckley, D.L., Gustafson, J.L., Zinn, N., Grandi, P., Shimamura, S., Bergamini, G., Faelth-Savitski, M., Bantscheff, M., Cox, C., Gordon, D.A., Willard, R.R., Flanagan, J.F., Casillas, L.N., Votta, B.J., Den Besten, W., Famm, K., Kruidenier, L., Carter, P.S., Harling, J.D., Churcher, I., Crews, C.M. (2015). Catalyticin vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol, 11, 611-617. [PubMed] [Google Scholar]
- Bondeson, D.P., Smith, B.E., Burslem, G.M., Buhimschi, A.D., Hines, J., Jaime-Figueroa, S., Wang, J., Hamman, B.D., Ishchenko, A., Crews, C.M. (2018). Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol, 25(1), 78-87. [PubMed] [Google Scholar]
- Bowen, T.S., Adams, V., Werner, S., Fischer, T., Vinke, P., Brogger, M.N., Mangner, N., Linke, A., Sehr, P., Lewis, J., Labeit D., Gasch, A., Labeit, S. (2017). Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia. J Cachexia Sarcopenia Muscle, 8, 939-953. [PubMed] [Google Scholar]
- Buckley, D.L., Raina, K., Darricarrere, N., Hines, J., Gustafson, J.L., Smith, I.E., Miah, A.H., Harling, J.D., Crews, C.M. (2015). HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol, 10, 1831-1837. [PubMed] [Google Scholar]
- Burslem G.M., Crews, C.M. (2020). Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell, 181, 102-114. [PubMed] [Google Scholar]
- Burslem, G.M., Smith, B.E., Lai, A.C., Jaime-Figueroa, S., McQuaid, D.C., Bondeson, D.P., Toure, M., Dong, H., Qian, Y., Wang, J., Crew, A.P., Hines, J., Crews, C.M. (2018). The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol, 25(1), 67-77.e63. [PubMed] [Google Scholar]
- Chamberlain P.P. (2018). Linkers for protein degradation. Nature Chem Biol, 14, 638-641. [Google Scholar]
- Chamberlain, P.P., Cathers, B.E. (2019). Cereblon modulators: low molecular weight inducers of protein degradation. Drug Discov Today, 31, 29-34. [Google Scholar]
- Chamberlain, P.P., Hamann, L.G. (2019) Development of targeted protein degradation therapeutics. Nat Chem Biol, 15, 937-944. [PubMed] [Google Scholar]
- Churcher, I. (2018). PROTAC-induced protein degradation in drug discovery: breaking the rules or just making new ones? J Med Chem, 61, 444-452. [PubMed] [Google Scholar]
- Collins, G.A., Goldberg, A.L. (2017). The logic of the 26S proteasome. Cell, 169, 792-806. [CrossRef] [PubMed] [Google Scholar]
- Conde, J., Artzi, N. (2015) Are RNAi and miRNA therapeutics truly dead? Trends Biotech, 33, 141-144. [Google Scholar]
- Cong, L., Ran, F.A., Cox, D., Lin, S., Baretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819-823. [CrossRef] [PubMed] [Google Scholar]
- Costales, M.G., Suresh, B., Vishnu, K., Disney, M.D. (2019). Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Cell Chem Biol, 26, 1180-1186. [PubMed] [Google Scholar]
- Costales, M.G., Aikawa, H., Li, Y., Childs-Disney, J.L., Abegg, D., Hoch, D.G., Velagapudi, S.P., Nakai, Y., Khan, T., Wang, K.W., Yildirim, I., Adibekian, A., Wang, E.T., Disney, M. (2020). Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc Natl Acad Sci USA, 117(5), 2406-2411. [Google Scholar]
- Cromm, P.M., Crews, C.M. (2017). Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol, 2017, 1181-1190. [Google Scholar]
- Cromm, P.M., Samarasinghe, K.T.G., Hines, J., Crews, C.M. (2018). Addressing kinase-independent functions of Fak via PROTAC-addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc, 140, 17019-17026. [PubMed] [Google Scholar]
- Deng, Y., Wang, C.C., Choy, K.W., Du, Q., Chen, J., Wang, Q., Li, L., Chung, T.K.H., Tang, T. (2014). Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene, 538, 217-227. [PubMed] [Google Scholar]
- Ding, Y., Fei, Y., Lu, B. (2020). Emerging new concepts of degrader technologies. Trends Pharmacol Sci, 41(7), 464-474. [PubMed] [Google Scholar]
- Dharmasiri, N., Dharmasiri, S., Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature, 435, 441-445. [CrossRef] [PubMed] [Google Scholar]
- Drummond, M.L., Henry, A., Li, H., Williams, C.I. (2020). Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in silico methodologies. J Chem Inf Model, 60(10), 5234-5254. [PubMed] [Google Scholar]
- Dybas, J.M., Herrmann, C., Weitzman, M.D. (2018). Ubiquitination and the interface of tumor viruses and DNA damages responses. Curr Opin Virol, 32, 40-47. [PubMed] [Google Scholar]
- Farnaby, W., Koegl, M., Roy J., Whitworth, C., Diers, E., Trainor, N., Zollman, D., Steurer, S., Karolyi-Oezguer, J., Riedmueller, C., Gmaschitz, T., Wachter, J., Dank, C., Galant, M., Sharps, B., Rumpel, K., Traxler E., Gerstberger, T., Schnitzer, R., Petermann, O., Greb, P., Weinstabl, H., Bader, G., Zoephel, A., Weiss-Puxbaum, A., Ehrenhofer-Wolfer, K., Wohrle, S., Boehmelt, G., Rinnenthal, J., Arnhof, H., Wiechens, N., Wu, M.-Y., Owen-Hughes, T., Ettmayer, P., Pearson, M., McConnell, D.B., Ciulli, A. (2019). BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol, 15, 672-680. [PubMed] [Google Scholar]
- Fischer, E.S., Bohm, K., Lydeard, J.R., Yang, H., Stadler, M.B., Cavadini, S., Nagel, J., Serluca, F., Acker, V., Lingaraju, G.M., Tichkule, R.B., Schebesta, M., Forrester, W.C., Schirle, M., Hassiepen, U., Ottl, J., Hild, M., Beckwith, R.E.J., Harper, J.W., Jenkins, J.L., Thomä, N.H. (2014). Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 512, 49-53. [PubMed] [Google Scholar]
- Fisher, S.L., Phillips, A.J. (2018). Targeted protein degradation and the enzymology of degraders. Curr Opin Chem Biol, 44, 47-55. [PubMed] [Google Scholar]
- Flanagan, J.J., Qian, Y., Gough, S.M., Andreoli, M., Bookbinder, M., Cadelina, G., Bradley, J., Rousseau, E., Chandler, J., Willard, R., Pizzano, J., Crews, C.M., Crew, A.P., Taylor, I., Houston, J. (2018). ARV-471, an oral estrogen receptor PROTAC protein degrader for breast cancer. SABCS, San Antonio, Texas, USA, 2018, December 4–8. [Google Scholar]
- Gadd, M.S., Testa, A., Lucas, X., Chan, K.-H., Chen, W., Lamont, D.J., Zengerie, M., Ciulli, A. (2017). Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol, 13, 514-521. [PubMed] [Google Scholar]
- Gandhi, A.K, Kang, J., Havens, C.G., Conklin, T., Ning, Y., Wu, L., Ito, T., Ando, H., Waldman, M.F., Thakurta, A., Klippel, A., Handa, H., Daniel, T.O., Schafer, P.H., Chopra, R. (2014). Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br J Haematol, 164(6), 811-821. [PubMed] [Google Scholar]
- Ghidini, A., Clery, A., Halloy, F., Allain, F.H.T., Hall, J. (2021). RNA-PROTACs: degraders of RNA-binding proteins. Angew Chem Int Ed, 60(6), 3163-3169. [Google Scholar]
- Gordon, D.E., Jang, G.M., et al. (125 authors). (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583, 459-468. [PubMed] [Google Scholar]
- Haniff, H.S., Tong, Y., Liu, X., Chen, J.L., Suresh, B.M., Andrews, R.J., Peterson, J.M., O’Leary, C.A., Benhamou, R.I., Moss, W.N., Disney, M.D. (2020). Targeting the SARS-CoV‑2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders. ACS Cent Sci, 6, 1713-1721. [PubMed] [Google Scholar]
- He, S., Ma, J., Fang, Y., Liu, Y, Wu, S., Dong, G., Wang, W., Sheng, C. (2020). Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm Sinica B. DOI: 10.1016/j.apsb.2020.11.022. [Google Scholar]
- Henning, N.J., Boike, L., Jessica N., Spradlin, J.N., Ward, C.C., Belcher, B., Brittain, S.M., Hesse, M., Dovala, D., McGregor, L., McKenna, J., Tallico, J.A., Schirle, M., Nomura, D.K. (2021). Deubiquitinase-targeting chimeras for targeted protein stabilization. bioRxiv preprint. DOI: 10.1101/2021.04.30.441959. [Google Scholar]
- Itoh, Y., Ishikawa, M., Naito, M., Hashimoto, Y. (2010). Protein knockdown using methyl bestatin–ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J Am Chem Soc, 132, 5820-5826. [PubMed] [Google Scholar]
- Kargbo, R.B. (2020). SMARCA2/4 PROTAC for targeted protein degradation and Cr therapy. ACS Med Chem Lett, 11, 1797-1798. [PubMed] [Google Scholar]
- Karim, M., Biquand, M., Declercq, M., Jacob, Y., van der Werf, S., Demeret, C. (2020). Nonproteolytic K29-linked ubiquitination of the PB2 replication protein of influenza A viruses by proviral Cullin 4-based E3 ligases. mBio, 11(2), e00305-20. [PubMed] [Google Scholar]
- Kenten, J.H., Roberts, S.F., Lebowitz, M.S. (2000). Controlling protein levels in eukaryotic organisms using novel compounds comprising a ubiquitination recognition element and a protein binding element. WO2000047220A1. [Google Scholar]
- Kim, J., Kim, H., Park, S.B. (2014). Privileged structures: efficient chemical ′′navigators′′ toward unexplored biologically relevant chemical spaces. J Am Chem Soc, 136, 14629-14638. [PubMed] [Google Scholar]
- Konstantinidou, M., Li, J., Zhang, B., Wang, Z., Shaabani, S., Ter Brake, F., Essa, K., Dömling, A. (2019). PROTACs- a game-changing technology. Expert Opin Drug Discov, 14(12), 1255-1268 [PubMed] [Google Scholar]
- Krönke, J., Udesshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., Tanya Svinkina, T., Heckl, D., Comer, E., Li, X., Ciarlo, C., Hartman, E., Munshi, N., Schenone, M., Schreiber, S.L., Carr, S.A., Ebert B.L. (2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science, 343(6168), 301-305. [PubMed] [Google Scholar]
- Lai, A.C., Crews, C.M. (2017). Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov, 16(2), 101-114. [PubMed] [Google Scholar]
- Lebraud, H., Wright, D.J.J., Johnson, C.N., Heightman, T.D. (2016). Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci, 2(12), 927-934. [PubMed] [Google Scholar]
- Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and permeability in drug discovery and development settings. Adv Drug Delivery Rev, 23, 3-25. [Google Scholar]
- Long, M.J., Gollapalli, D.R., Hedstrom, L. (2012). Inhibitor mediated protein degradation. Chem Biol, 19, 629-637. [PubMed] [Google Scholar]
- Lu, G., Middelton, R.E., Sun, H., Naniong, M., Ott, C.J., Mitsiades, C.S., Wong, K.-K., Bradner, J.E., Kaelin Jr, W.G. (2014). The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 343(6168), 305-309. [PubMed] [Google Scholar]
- Luh, L.M., Scheib, U., Juenemann, K., Wortmann, L., Brands, M., Cromm, P.M. (2020). Prey for the proteasome: targeted protein degradation – A medicinal chemist’s perspective.. Angew Chem Int Ed Engl, 59, 15448-15466. [PubMed] [Google Scholar]
- McCoull, W., Cheung, T., Anderson, E., Barton, P., Burgess, J., Byth, K., Cao, Q., Castaldi, M.P., Chen, H., Chiarparin, E., Carbajo, R.J., Code, E., Cowan, S., Davey, P.R., Ferguson, A.D., Fillery, S., Fuller, N.O., Gao, N., Hargreaves, D., Howard, M.R., Hu, J., Kawatkar, A., Kemmitt, P.D., Leo, E., Molina, D.M., O’Connell, N., Petteruti, P., Rasmusson, T., Raubo, P., Rawlins, P.B., Ricchiuto, P., Robb, G.R., Schenone, M., Waring, M.J., Zinda, M., Fawell, S., Wilson, D.M. (2018). Development of a novel B-cell lymphoma 6 (BCL6) PROTAC to provide insight into small molecule targeting of BCL6. ACS Chem Biol, 13, 3131-3141. [PubMed] [Google Scholar]
- Mahon, C., Krogan, N.J., Craig, C.S., Pick, E. (2014). Cullin E3 ligases and the rewiring by viral factors. Biomolecules, 4, 897-930. [PubMed] [Google Scholar]
- Maniaci, C., Hughes, S.J., Testa, A., Wenzhang, C., Lamont, D.J., Rocha, S., Alessi, D.R., Romeo, R., Ciulli, A. (2017). Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun, 8, 830. [PubMed] [Google Scholar]
- Min, J.H. (2002). Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling. Science, 296, 1886-1889. [CrossRef] [PubMed] [Google Scholar]
- Mullard, A. (2019a). Arvinas’s PROTACs Pass First Safety and PK Analysis. Nat Rev Drug Discov, 18(12), 895. DOI: 10.1038/d41573-019-00188-4. [PubMed] [Google Scholar]
- Mullard, A. (2019b). First targeted protein degrader hits the clinic. Nat Rev Drug Discov, 18, 237-239. [Google Scholar]
- Mullard, A. (2021). Targeted protein degraders crowd into the clinic. Nat Rev Drug Discov, 20, 247-250. [PubMed] [Google Scholar]
- Neklesa, T.K., Crews, C.M. (2012). Chemical biology: greasy tags for protein removal. Nature, 487(7407), 308-309. [PubMed] [Google Scholar]
- Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., Raina, K, Holley, S.A., Crews, C.M. (2011). Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat Chem Biol, 7(8), 538-543. [PubMed] [Google Scholar]
- Neklesa, T., Snyder, L.B., Willard, R.R., Vitale, N., Pizzano, J., Gordon, D.A., Bookbinder, M., Macaluso, J., Dong, H., Ferraro, C., Wang, G., Wang, J., Crews, C.M., Houston, J., Crew, A.P., Taylor, I. (2019). ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J Clin Oncol, 37(7), suppl. 259, ASCO-GU: San Francisco, California, USA, February 14–16. [CrossRef] [Google Scholar]
- Nishiguchi, G., Keramatnia, F., Min, J., Chang, Y., Jonchere, B., Das, S., Actis, M., Price, J., Chepyala, D., Young, B., McGowan, B., Slavish, P.J., Mayasundari, A., Jarusiewicz, J.A., Yang, L., Yong, L., Fu, X., Garrett, S.H., Papizan, J.B., Kodali, K., Peng, J., Pruett Miller, S.M., Roussel, M.F., Mullighan, C., Fischer, M., Rankovic, Z. (2021). Identification of potent, selective, and orally bioavailable small-molecule GSPT1/2 degraders from a focused library of cereblon modulators. J Med Chem, 64, 7296-7311. [PubMed] [Google Scholar]
- Nowak, R.P., Jones, L.H. (2021). Target validation using PROTACs: applying the four pillars framework. SLAS Discov, 26(4), 474-483. [PubMed] [Google Scholar]
- Nowak, R.P., DeAngelo, S.L., Buckley, D., He, Z., Donovan, K.A., An, J., Safaee, N., Jedrychowski, M.P., Ponthier, C.M., Ishoey, M., Zhang T., Mancias, J.D., Gray, N.S., Bradner, J.E., Fischer, E.S. (2018). Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol, 14, 706-714. [PubMed] [Google Scholar]
- Nunes, J., McGonagle, G.A., Eden, J., Kiritharan, G., Touzet, M., Lewell, X., Emery, J., Eidam, H., Harling, J.D., Anderson, N.A. (2019). Targeting IRAK4 for degradation with PROTACs. ACS Med Chem Lett, 10, 1081-1085. [PubMed] [Google Scholar]
- Olson, C.M., Jiang, B., Erb, M.A., Liang, Y., Doctor, Z.M., Zhang, Z., Kwiatkowski, N., Boukhali, M., Green, J.L., Haas, W., Nomanbhoy, T., Fischer, E.S., Young, R.A., Bradner, J.E., Winter, G.E., Gray, N.S. (2018). Pharmacological per-turbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol, 14, 163-170. [PubMed] [Google Scholar]
- Ottis, P., Crews, C.M. (2017). Proteolysis-targeting chimeras. Induced protein degradation as a therapeutic strategy. ACS Chem Biol, 12, 892-898. [PubMed] [Google Scholar]
- Petterson, M., Crews, C.M. (2019). PROteolysis TArgeting Chimeras (PROTACs) − Past, present and future. Drug Discov Today: Technologies, 31, 15-27. [Google Scholar]
- Pineda, C.T., Ramanathan, S., Fon Tacer, K., Weon, J.L., Potts, M.B., Ou, Y.H., White M.A., Potts, P.R. (2015). Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell, 160(4), 715-728. [PubMed] [Google Scholar]
- Popow, J., Arnhof, H., Bader, G., Berger, H., Ciulli, A., Covini, D., Dank, C., Gmaschitz, T., Greb, P., Karolyi-Ozguer, J., Koegl, M., McConnell, D.B., Pearson, M., Rieger, M., Rinnenthal, J., Roessler, V., Schrenk, A., Spina, M., Steurer, S., Trainor, N., Traxler, E., Wieshofer, C., Zoephel, A., Ettmayer, P. (2019). Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J Med Chem, 62, 2508-2520. [PubMed] [Google Scholar]
- Reboud-Ravaux, M. (2021). Le protéasome, la seconde vie d’une cible thérapeutique validée : aspects structuraux et nouveaux inhibiteurs. Biologie Aujourd’hui, 215. [Google Scholar]
- Riching, K.M., Mahan, S., Corona, C.R., McDougall, M., Vasta, J.D., Robers, M.B., Urh, M., Daniels, D.L. (2018). Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem Biol, 13(9), 2758-2770. [PubMed] [Google Scholar]
- Roy, R.D., Rosenmund, C., Stefan, M.I. (2017). Cooperative binding mitigates the high-dose hook effect. BMC Syst Biol, 11, 74-84. [PubMed] [Google Scholar]
- Roy, M, Bader, G., Diers, E., Farnaby, W., Ciulli, A. (2019). Crystal structure of PROTAC 1 in complex with the bromodomain of human SMARCA2 and pVHL:ElonginC:ElonginB. DOI: 10.2210/pdb6HAY/pdb. [Google Scholar]
- Saenz, D.T., Fiskus, W., Qian, Y., Manshouri, T., Rajapakshe, K., Raina, K., Coleman, K.G., Crew, A.P., Shen, A., Mill, C.P., Sun, B., Qiu, P., Kadia, T.M., Pemmaraju, N., DiNardo, C., Kim, M.S., Nowak, A.J., Coarfa, C., Crews, C.M., Verstovsek, S., Bhalla, K.N. (2017). Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia, 31, 1951–1961. [PubMed] [Google Scholar]
- Salami, J., Crews, C.M. (2017). Waste disposal-an attractive strategy for cancer therapy. Science, 355, 1163-1167. [PubMed] [Google Scholar]
- Salami, J., Alabi, S., Willard, R.R., Vitale, N.J., Wang, J., Dong, H., Jin, M., McDonnell, D.P., Crew, A.P., Neklesa, T.K., Crews, C.M. (2018). Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol, 1, 100, 1-9. [PubMed] [Google Scholar]
- Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., Deshaies, R.J. (2001). Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA, 98, 8554-8559. [Google Scholar]
- Sakamoto, K.M., Kim, K.B., Verma, R., Ransick, A., Stein, B., Crews, C.M, Deshaies, R.J. (2003). Development of protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics, 2, 1350-1358. [PubMed] [Google Scholar]
- Schapira, M., Calabrese, M.F., Bullock, A.N., Crews, C.M. (2019). Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov, 18, 949-963. [PubMed] [Google Scholar]
- Schiedel, M., Herp, D., Hammelmann, S., Swyter, S., Lehotzky, A., Robaa, D., Ola, J., Ovadi, J., Sippl, W., Jung, M. (2018). Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J Med Chem, 61, 482-491. [PubMed] [Google Scholar]
- Schiemer, J., Horst, R., Meng, Y., Montgomery, J.I., Xu, Y., Feng, X., Borzilleri, K., Uccello, D.P., Leverett, C., Brown, S., Che, Y., Brown, M.F., Hayward, M.M., Gilbert, A.M., Noe, M.C., Calabrese, M.F. (2021). Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol, 17, 152-160. [PubMed] [Google Scholar]
- Schneekloth, A.R., Pucheault, M., Tae, H.S., Crews, C.M. (2008). Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett, 18, 5904-5908. [PubMed] [Google Scholar]
- Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.-F., Sharon, M., Browse, J., He, S.Y., Rizo, J., Howe, G.A., Zheng, N. (2010). Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor. Nature, 468(7322), 400-405. [PubMed] [Google Scholar]
- Shi, Y., Long, M.J.C., Rosenberg, M.M., Li, S., Kobjack, A., Lessans, P., Coffey, R.T., Hedstrom, L. (2016). Boc3Arg-linked ligands induce degradation by localizing target proteins to the 20S proteasome. ACS Chem Biol, 11 (12), 3328-3337. [PubMed] [Google Scholar]
- Silva, M.C., Ferguson, F.M., Cai, Q., Donovan, K.A., Nandi, G., Patnaik, D., Zhang, T., Huang, H.-T., Lucent, D. (2019). Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife., 8, e45457. [PubMed] [Google Scholar]
- Soares, P., Gadd, M.S., Frost, J., Galdeano, C., Ellis, L., Epemolu, O., Rocha, S., Read, K.D., Ciulli, A. (2018). Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships leading to the chemical probe (2S, 4R)-1-((S)-2-(1-cyanocyclopropane carboxamido)-3, 3-dimethyl butanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J Med Chem, 61(2), 599-618 [PubMed] [Google Scholar]
- Suh, J., Yoo, S.H., Kim, M.G., Jeong, K., Ahn, J.Y., Kim, M.S., Chae, P.S., Lee, T.Y., Lee, J., Jang, Y.A., Ko, E.H. (2007). Cleavage agents for soluble oligomers of amyloid beta peptides. Angew Chem Int Ed Engl, 46(37), 7064-7067. [PubMed] [Google Scholar]
- Sun, Y., Ding, N., Song, Y., Yang, Z., Liu, W., Zhu, J., Rao, Y. (2019). Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia, 33, 2105-2110. [PubMed] [Google Scholar]
- Sun, X., Wang, J., Yao, X., Zheng, W., Mao, Y., Lan, T., Wang, L., Sun, Y., Zhang, X., Zhao, Q., Zhao, J., Xiao, R.P., Zhang, X., Ji, G., Rao, Y. (2019). A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov, 5, 10. DOI: 10.1038/s41421-018-0079-1. [CrossRef] [PubMed] [Google Scholar]
- Taillandier, D. (2021). Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique. Biologie Aujourd’hui, 215. [Google Scholar]
- Takahashi, D., Moriyama, J., Nakamura, T., Miki, E., Takahashi, E., Sato, A., Akaike, T., Itto-Nakama, K., Arimoto, H. (2019). AUTACs: cargo-specific degraders using selective autophagy. Mol Cell, 76, 797-810. [CrossRef] [PubMed] [Google Scholar]
- Tan, X., Calderon-Villalobos, A.C., Sharon, M., Zheng, C., Robinson, C.V., Mark, E., Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446, 640-645. [CrossRef] [PubMed] [Google Scholar]
- Testa, A., Lucas, X., Castro, G.V., Chan, K.-H., Wright, J.E., Runcie, A.C., Gadd, M.S., Harrison, T.A., Ko, E.-J., Fletcher, D., Ciulli, A. (2018). 3- Fluoro-4-hydroxyprolines: synthesis, conformational analysis, and stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation. J Am Chem Soc, 140, 9299-9313. [CrossRef] [PubMed] [Google Scholar]
- Testa, A., Hughes, S.J., Lucas, X., Wright, J.E., Ciulli, A. (2020). Structure-based design of a macrocyclic PROTAC. Angew Chem Int Ed, 59, 1727-1734. [CrossRef] [Google Scholar]
- Tomoshige, S., Hashimoto, Y., Ishikawa, M. (2016). Efficient protein knockdown of HaloTag-fused proteins using hybrid molecules consisting of IAP antagonist and HaloTag ligand. Bioorg Med Chem, 24(14), 3144-3148. [CrossRef] [PubMed] [Google Scholar]
- Toure, M., Crews, C.M. (2016). Small-molecule PROTACs. New approaches to protein degradation. Angew Chem Int Ed, 55, 1966–1973. [CrossRef] [Google Scholar]
- Tutland, T., Ethell, B., Kosaka, T., Blasco, F., Zang, R.X., Jain, M., Gould, T., Hoffmaster, K. (2014). Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol, 5, 174. DOI: 10.3389/fphar.2014.00174. [PubMed] [Google Scholar]
- Valeur, E., Guéret, S.M., Adhihou, H., Gopalakrishnan, R., Lemurell, M., Waldmann, H., Grossmann, T.N., Plowright, A.T. (2017). New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl, 21(35), 10294-10323. [CrossRef] [Google Scholar]
- Walters, W.P. (2012). Going further than Lipinski’s rule in drug design. Exp Opin Drug Discovery, 7, 99-107. [CrossRef] [Google Scholar]
- Wang, Y., Jiang, X., Feng, F., Liu, W., Sun, H. (2020). Degradation of proteins by PROTACs and other strategies. Act Pharm Sin B, 10(2), 207-238. [CrossRef] [Google Scholar]
- Watt, G.F, Scoot-Stevens, P., Gaohua, L. (2019). Targeted protein degradation in vivo with proteolysis targeting chimeras: current status and future considerations. Drug Disc Today, 31, 69-80. [CrossRef] [Google Scholar]
- Winter, G.E., Buckley, D.L., Paulk, J., Roberts, J.M., Souza, A., Dhe-Paganon, S., Bardner, J.E. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 348, 1376-1381. [CrossRef] [PubMed] [Google Scholar]
- Wu, P., Nielsen, T.E., Clausen, M.H. (2015). FDA-approved small- molecule kinase inhibitors. Trends Pharmacol Sci, 36, 422-439. [CrossRef] [PubMed] [Google Scholar]
- Wu, H.Q., Baker, D., Ovaa, H. (2020). Small molecules that target the ubiquitin system. Biochem Soc Trans, 48, 479-497. [CrossRef] [PubMed] [Google Scholar]
- Zaidman, D., Prilusky, J., London, N. (2020). PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J Chem Inf Model, 60, 4894-4903. [CrossRef] [PubMed] [Google Scholar]
- Zheng, N., Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 86, 129-157. [PubMed] [Google Scholar]
- Zorba, A., Nguyen, C., Xu, Y., Starr, J., Borzilleri, K., Smith, J., Zhu, H., Farley, K.A., Ding, W., Schiemer, J., Feng, X., Chang, J.S., Uccello, D.P., Young, J.A., Garcia-Irrizary, C.N., Czabaniuk, L., Schuff, B., Oliver, R., Montgomery, J., Hayward, M.M., Coe, J., Chen, J., Niosi, M., Luthra, S., Shah, J.C., El-Kattan, A., Qiu, X., West, G.M., Noe, M.C., Shanmugasundaram, V., Gilbert, A.M., Brown, M.F., Calabrese, M.F. (2018). Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA, 115, E7285-E7292. [CrossRef] [Google Scholar]
- Zou, Y., Ma, D., Wang, Y. (2019). The PROTAC technology in drug development. Cell Biochem Funct, 37, 21-30. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.