Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 215, Numéro 1-2, 2021
Page(s) 1 - 23
DOI https://doi.org/10.1051/jbio/2021005
Publié en ligne 16 août 2021
  • Althof, N., Goetzke, C.C., Kespohl, M., Pinkert, S., Kaya, Z., Klingel, K., Beling, A. (2018). The immunoproteasome-specific inhibitor ONX-0914 reverses susceptibility to acute viral myocarditis. EMBO Biol Med, 10, 200-218. [Google Scholar]
  • Arrigo, A.P., Tanaka, K., Goldberg, A.L., Welch, W.J. (1988). Identity of the 19S “prosome” particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature, 331, 192-194. [CrossRef] [PubMed] [Google Scholar]
  • Asano S., Fukada, Y., Beck, F., Aufderheide, A., Förster, F., Danev, R., Baumeister, W. (2015). Proteasomes. A molecular sensus of 26S proteasomes in intact neurons. Science, 347, 439–442. [CrossRef] [PubMed] [Google Scholar]
  • Bajevic, M., Orlowski, R.Z. (2019). Pharmacodynamics and pharmacokinetics of proteasome inhibitors for the treatment of multiple myeloma. Expert Opin Drug Metab Toxicol, 15, 459-473. [CrossRef] [PubMed] [Google Scholar]
  • Bard, J.A.M., Goodall, E.A., Greene, E.R., Jonsson, E., Dong, K.C., Martin, A. (2018). Structure and function of the 26S proteasome. Ann Rev Biochem, 87, 697-724. [CrossRef] [PubMed] [Google Scholar]
  • Bashore, C., Dambacher, C.M., Goodall, E.A., Matyskiela, M.E., Lander G.C., Martin, A. (2015). Ubp6 deubiquitinase controls conformational dynamics and substrate degradation by the 26S proteasome. Nat Struct Mol Biol, 22, 712-719. [CrossRef] [PubMed] [Google Scholar]
  • Basler, M., Lindstrom, M.M., LaStant, J.J., Bradshaw, J.M., Owens, T.D., Schmidt, C., Maurits, E., Tsu, C., Overkleeft, H.S., Kirk, C.J., Langrish, C.L., Groettrup, M. (2018). Co-inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. EMBO Rep, 19, e46512. [CrossRef] [PubMed] [Google Scholar]
  • Basse, N., Papapostolou, D., Pagano, M., Reboud-Ravaux, M., Bernard, E., Felten, A.S., Vanderesse, R. (2006). Development of lipopeptides for inhibiting 20S proteasomes. Bioorg Med Chem Lett, 16, 3277-3281. [CrossRef] [PubMed] [Google Scholar]
  • Basse, N., Piguel, S., Papapostolou, D., Ferrier-Berthelot, A., Richy, N., Pagano, M., Sarthou, P., Sobczak-Thépot, J., Reboud-Ravaux, M., Vidal, J. (2007). Linear TMC-95-based proteasome inhibitors. J Med Chem, 50, 2842-2850. [CrossRef] [PubMed] [Google Scholar]
  • Basse, N., Montes, M., Maréchal, X., Qin, L., Bouvier-Durand, M., Genin, E., Vidal, J., Villoutreix, B.O., Reboud-Ravaux, M. (2010). Novel organic proteasome inhibitors identified by virtual and in vitro screening. J Med Chem, 53, 509-513. [CrossRef] [PubMed] [Google Scholar]
  • Beck, P., Reboud-Ravaux, M., Groll, M. (2015). Identification of a β1/β2-specific sulfonamide proteasome ligand by crystallographic screening. Angew Chem Int Ed Engl, 4, 11275-11278. [CrossRef] [Google Scholar]
  • Blackburn, C., Barrett, C., Blank, J. L., Bruzzese, F.J., Bump, N., Dick, L. R., Fleming, P., Garcia, K., Hales, P., Hu, Z.G., Jones, M., Liu, J.X., Sappal, D. S., Sintchak, M.D., Tsu, C., Gigstad, K.M. (2010a). Optimization of a series of dipeptides with a P3 threonine residue as non-covalent inhibitors of the chymotrypsin-like activity of the human 20S proteasome. Bioorg Med Chem Lett, 20, 6581-6586. [CrossRef] [PubMed] [Google Scholar]
  • Blackburn, C., Gigstad, K.M., Hales, P., Garcia, K., Jones, M., Bruzzese, F.J., Barrett, C., Liu, J.X., Soucy, T. A., Sappal, D.S., Bump, N., Olhava, E.J., Fleming, P., Dick, L.R., Tsu, C., Sintchak, M.D., Blank, J.L. (2010b). Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Biochem J, 430, 461-476. [CrossRef] [PubMed] [Google Scholar]
  • Bordessa, A., Keita, M., Maréchal, X., Formicola, L., Lagarde, N., Rodrigo, J., Bernadat, G., Bauvais, C., Soulier, J.L., Dufau, L., Milcent, T., Crousse, B., Reboud-Ravaux, M., Ongeri, S. (2013). α- and β-hydrazino acid-based pseudopeptides inhibit the chymotrypsin-like activity of the eukaryotic 20S proteasome. Eur J Med Chem, 70, 505-524. [CrossRef] [PubMed] [Google Scholar]
  • Borrissenko, L., Groll, M. (2007). 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev, 107, 687-717. [CrossRef] [PubMed] [Google Scholar]
  • Bosc, E., Nastri, J., Lefort, V., Valli, M., Contiguiba, F., Pioli, R., Furlan, M., Bolzani, V.D.S., El Amri, C., Reboud-Ravaux, M. (2018). Piperlongumine and some of its analogs inhibit selectively the human immunoproteasome over the constitutive proteasome. Biochem Biophys Res Commun, 496, 961-966. [CrossRef] [PubMed] [Google Scholar]
  • Britton, M., Lucas, M.M., Downey, S.L., Screen, M., Pletnev, A.A., Verdoes, M., Tokhunts, R.A., Amir, O, Goddard, A.L., Pelphrey, P.M., Wright, D.L. Overkleeft, H.S., Kisselev, A.L. (2009). Selective inhibitor of proteasome’s caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. Chem Biol, 16, 1278-1289. [CrossRef] [PubMed] [Google Scholar]
  • Chauhan, D., Singh, A.V., Aujay, M., Kirk, C.J., Bandi, M., Ciccarelli, B., Raje, N., Richardson, P., Anderson, K.C. (2010). A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood, 116, 4906-4915. [CrossRef] [PubMed] [Google Scholar]
  • Chen, S., Wu, J., Lu, Y., Ma, Y.-B., Lee, B.-H., Yu, Z., Ouyang, Q., Finley, D.J., Kirschner, M.W., Mao, Y. (2016). Structural basis for dynamic regulation of the human 26S proteasome. Proc Natl Acad Sci USA, 113, 12991-12996. [CrossRef] [Google Scholar]
  • Chen, X., Htet, Z.M., López-Alfonzo, E., Martin, A., Walter, K.J. (2020). Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. FEBS J, 19 nov. 2020, 1-21. https://doi.org/10.1111/febs.15638. [Google Scholar]
  • Ciechanover, A., Heller, H., Elias, H., Haas, A.L., Hershko, A. (1980). ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci USA, 77, 1365-1368. [CrossRef] [Google Scholar]
  • Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Bio, 6, 79-87. [CrossRef] [Google Scholar]
  • Collins, G.A., Goldberg, A.L. (2017). The logic of the 26S proteasome. Cell, 169, 792-806. [CrossRef] [PubMed] [Google Scholar]
  • Collins, G.A., Goldberg, A.L. (2020). Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Proc Natl Acad Sci USA, 117, 4664-4674. [CrossRef] [Google Scholar]
  • Cromm, P.M., Crews, C.M. (2017). Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol, 24, 1181-1190. [CrossRef] [PubMed] [Google Scholar]
  • de Bruin, G., Xin, B.T., Kraus, M., van der Stelt, M., van der Marel, G.A., Kisselev, A.F., Driessen, C., Florea, B.I., Overkleeft, H.S. (2016). A set of activity-based probes to visualize human (immuno)-proteasome activities. Angew Chem Int Ed, 55, 4199-4203. [CrossRef] [Google Scholar]
  • De Poot, A.H., Tian, G., Finley, D. (2017). Meddling with fate: the proteasomal deubiquitinating enzymes. J Mol Biol, 429, 3525-3545. [CrossRef] [PubMed] [Google Scholar]
  • Desvergne, A., Genin, E., Maréchal, X., Gallastegui, N., Dufau, L., Richy, N., Groll, M., Vidal, J., Reboud-Ravaux, M. (2013). Dimerized linear mimics of a natural cyclopeptide (TMC-95A) are potent noncovalent inhibitors of the eukaryotic 20S proteasome. J Med Chem, 56, 3367-3378. [CrossRef] [PubMed] [Google Scholar]
  • Desvergne, A., Cheng, Y., Grosay-Gaudrel, S., Maréchal, X., Reboud Ravaux, M., Genin, E., Vidal J. (2014). Noncovalent fluorescent probes of human immuno- and constitutive proteasomes. J Med Chem, 57, 9211-9217. [CrossRef] [PubMed] [Google Scholar]
  • Ding, Z., Fu, Z., Xu, C., Wang, Y., Wang, Y., Li, J., Kong, L., Chen, J., Li, N., Zhang, R., Cong, Y. (2017). High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Res, 27, 373-385. [CrossRef] [PubMed] [Google Scholar]
  • Ding, Z., Xu, C., Sahu, I., Wang, Y., Fu, Z., Huang, M., Wong, C.C.L., Glickman, M.H., Cong, Y. (2019). Structural snapshots of 26S proteasome reveals tetra-ubiquitin-induced conformations. Mol Cell, 73, 1150-1161. [CrossRef] [PubMed] [Google Scholar]
  • Dong, Y., Zhang, S., Wu, Z., Li, X., Wang, W.L., Zhu, Y., Stoilova-McPhie, S., Lu, Y., Finley, D., Mao, Y. (2019). Cryo-EM structures and dynamics of substrate engaged human 26S proteasome. Nature, 565, 49-55. [CrossRef] [PubMed] [Google Scholar]
  • Eisele, M.R., Reed, R.G., Rudack, T., Schweizer, A., Beck, F., Nagy, I., Pfeifer, G., Plitzko, J.M., Baumeister, W., Tomko, R.J., Sakata, E. (2018). Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptide gating. Cell Rep, 24, 1301-1315. [CrossRef] [PubMed] [Google Scholar]
  • Eisenberg-Lerner, A., Benyair, R., Hizkiahou, N., Nudel, N., Maor, R., Kramer, M.P., Shmueli, M.D., Zigdon, I., Cherniavsky Lev M., Ulman, A., Sagiv, J.Y., Dayan, M., Dassa, B., Rosenwald, M., Shachar, I., Li, J., Wang, Y., Dezorella, N., Khan, S., Porat, Z., Shimoni, E., Avinoam, O., Merbl, Y. (2020). Golgi organization is regulated by proteosomal degradation. Nat Commun, 11, 409-422. [CrossRef] [PubMed] [Google Scholar]
  • Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Ann Rev Biochem, 78, 477-513. [CrossRef] [Google Scholar]
  • Finley, D., Chen, X., Walters, K.J. (2016). Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci, 41, 77-93 [CrossRef] [PubMed] [Google Scholar]
  • Formicola, L., Maréchal, X., Basse, N., Bouvier-Durand, M., Bonnet-Delpon, D., Milcent, T., Reboud-Ravaux, M., Ongeri, S. (2009). Novel fluorinated pseudopeptides as proteasome inhibitors. Bioorg Med Chem Lett, 19, 83-86. [CrossRef] [PubMed] [Google Scholar]
  • Fukada, Y., Beck, F., Plitzko, J.M., Baumeister, W. (2017). In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes. Proc Natl Acad Sci USA, 114, 4412-4417. [CrossRef] [Google Scholar]
  • Furet, P., Imbach, P., Noorani, M., Koeppler, J., Laumen, K., Lang, M., Guagnano, V., Fürst, P., Roesel, J., Zimmermann, J., Garcia Echeverria, C. (2004). Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design. J Med Chem, 47, 4810-4813. [CrossRef] [PubMed] [Google Scholar]
  • Gallastegui, N., Beck, P., Arciniega, M., Huber, R., Hillebrand, S., Groll, M. (2012). Hydroxyureas as noncovalent proteasome inhibitors. Angew Chem Int Ed, 51, 247-249. [CrossRef] [Google Scholar]
  • Genin, E., Reboud-Ravaux, M., Vidal, J. (2010). Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr Top Med Chem, 10, 232-256. [CrossRef] [PubMed] [Google Scholar]
  • Goldberg, A.L. (2007). Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans, 35, 12-17. [CrossRef] [PubMed] [Google Scholar]
  • Gräwert, M.A., Groll, M. (2012). Exploiting nature’s rich source of proteasome inhibitors as starting points in drug development. Chem Commun, 48, 1364-1378. [CrossRef] [Google Scholar]
  • Groettrup, M., Kirk, C.J., Basler, M. (2010). Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol, 10, 73-78. [CrossRef] [PubMed] [Google Scholar]
  • Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H.D., Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 386, 463-471. [CrossRef] [PubMed] [Google Scholar]
  • Groll, M., Kim, K.B., Kairies, N., Huber, R., Crews, C.M. (2000). Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of a‘, b‘-epoxyketone proteasome inhibitors. J Am Chem Soc, 122, 1237-1238. [CrossRef] [Google Scholar]
  • Groll, M., Koguchi, Y. Huber, R., Kohno, J. (2001). Crystal structure of the 20S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol, 311, 543-548. [CrossRef] [PubMed] [Google Scholar]
  • Groll, M., Götz, M., Kaiser, M., Weyher, E., Moroder, L. (2006a). TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem Biol, 13, 607-614. [CrossRef] [PubMed] [Google Scholar]
  • Groll, M., Huber, R., Potts, B.C.M. (2006b). Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. J Am Chem Soc, 128, 5136-5141. [CrossRef] [PubMed] [Google Scholar]
  • Groll, M., Gallastegui, N., Maréchal, X., Le Ravalec, V., Basse, N., Richy, N., Genin, E., Huber, R., Moroder, L., Vidal, J., Reboud-Ravaux, M. (2010). 20S Proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A. Chem Med Chem, 5, 1701-1705. [CrossRef] [Google Scholar]
  • Guan, H., Wang, Y., Yu, T., Huang, Y., Li, M., Saeed, A.F.U.H., Perculija, V., Li, D., Xiao, J., Wang, D. (2020). Cryo-EM structures of the human PA200 and PA200-20S complex reveal regulation of proteasome gate opening and two PA200 apertures. PLOS Biol, 18, e3000654. [CrossRef] [PubMed] [Google Scholar]
  • Guo, X., Wang, X., Wang, Z., Banerjee, S., Yang, J., Huang, L., Dixon, J.E. (2016). Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol, 18, 202-212. [CrossRef] [PubMed] [Google Scholar]
  • Guo, X., Huang, X., Chen, M.J. (2017). Reversible phosphorylation of the 26S proteasome. Protein Cell, 8, 255-272. [CrossRef] [PubMed] [Google Scholar]
  • Hara, K., Maruki, Y., Xiaomeng, L., Ken-ichi, Y., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., Yonezawa, K. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 110, 177-189. [CrossRef] [PubMed] [Google Scholar]
  • Harrigan, J.A., Jacq, X., Martin, N.M., Jackson, S.P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nature Rev Drug Discov, 17, 57-77. [CrossRef] [PubMed] [Google Scholar]
  • Harshbarger, W., Miller, C., Diedrich, C., Sacchettini, J. (2015). Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure, 23, 418-424. [CrossRef] [PubMed] [Google Scholar]
  • Hershko, A., Ciechanover, A., Heller, H., Haas, A.L., Rose, I.A. (1980). Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP proteolysis. Proc Natl Acad Sci USA, 77, 1783-1786. [CrossRef] [Google Scholar]
  • Hideshima, T., Richardson, P., Chauhan, D., Palombella, V.J., Elliott, P.J., Adams, J., Anderson, K.C. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res, 61, 3071-3076. [PubMed] [Google Scholar]
  • Hovahannisyan, A., Pham, T.H., Bouvier, D., Tian, L., Reboud-Ravaux, M., Melikyan, G., Bouvier-Durand, M. (2013). C1 and N5 derivatives of cerpegin: synthesis of a new series based on structure-activity relationships to optimize their inhibitor effect on 20S proteasome. Bioorg Med Chem Lett, 23, 2693-2703. [Google Scholar]
  • Hovhannisyan, A., Pham, T.H., Bouvier, D., Piroyan, A., Dufau, L., Qin, L., Cheng, Y., Melikyan, G., Reboud-Ravaux, M., Bouvier-Durand, M. (2014). New C(4)- and C(1)-derivatives of furo[3, 4-c]pyridine-3-ones and related compounds: evidence for site-specific inhibition of the constitutive proteasome and its immunoisoform. Bioorg Med Chem Lett, 24, 1571-1580. [CrossRef] [PubMed] [Google Scholar]
  • Hu, G., Lin, G., Wang, M., Dick, L., Xu, R.-M., Nathan, C., Li, H. (2006). Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol, 59, 1417-1428. [CrossRef] [PubMed] [Google Scholar]
  • Huber, E., Basler, M., Schwab, R., Heinemeyer, W., Kirk, C.J., Groettrup, M., Groll, M. (2012). Immuno- and constitutive crystal structures reveal differences in substrate and inhibitor specificity. Cell, 148, 727-738. [CrossRef] [PubMed] [Google Scholar]
  • Huber, E.M., Groll, M. (2012). Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed, 51, 8708-8720. [CrossRef] [Google Scholar]
  • Huber, E., Heinemeyer, W., Groll, M. (2015). Bortezomib-resistant mutant proteasomes: structural and biochemical evaluation with carfilzomib and ONX 0914. Structure, 23, 407-417. [CrossRef] [PubMed] [Google Scholar]
  • Huber, E., Heinemeyer, W., Li, X., Arendt, C.S., Hochstrasser, M., Groll, M. (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature Commun, 7, 10900. [CrossRef] [Google Scholar]
  • Inobe, T., Matouschek, A. (2014). Paradigms of protein degradation by the proteasome. Curr Opin Struct Biol, 24, 156-164. [CrossRef] [PubMed] [Google Scholar]
  • Kaiser, M., Groll, M., Siciliano, C., Assfalg-Machleidt, I., Weyher, E., Kohno, J., Milbradt, A.G., Renner, C., Huber, R., Moroder, L. (2004). Binding mode of TMC-95A analogues to eukaryotic 20S proteasome. Chem Bio Chem, 5, 1256-1266. [CrossRef] [Google Scholar]
  • Kane, R.C., Farrell, A.T., Sridhara, R., Pazdur, R. (2006). United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res, 12, 2955-2960. [CrossRef] [PubMed] [Google Scholar]
  • Khor, B., Bredemeyer, A.L., Huang, C.-Y., Turnbull, I.R., Evans, R., Maggi, L.B. Jr, White, J.M., Walker, L.M., Carnes, K., Hess, R.A., Sleckman, B.P. (2006). Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol, 26, 2999-3007. [CrossRef] [PubMed] [Google Scholar]
  • Kim, D.-H., Sarbassov, D.D., Siraj, M.A., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110, 163-175. [CrossRef] [PubMed] [Google Scholar]
  • Kim, H.T., Goldberg, A.L. (2017). The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasome activities and ubiquitin-independent proteolysis. J Biol Chem, 292, 9830-9839. [CrossRef] [PubMed] [Google Scholar]
  • Kim, H.T., Goldberg, A.L. (2018). UBL domain of Usp14 and other proteins stimulates proteasome activities and protein degradation in cells. Proc Natl Acad Sci USA, 115, E11642-E11650. [CrossRef] [Google Scholar]
  • Kimura, H., Caturegli, P., Takahashi, M., Suzuki, K. (2015). New insights into the function of the immunoproteasome in immune and nonimmune cells. J Immunol Res, 2015, 541984. https://doi.org/10.1155/2015/541984. [CrossRef] [PubMed] [Google Scholar]
  • Kircheis, R., Haasbach, E., Lueftenegger, D., Heyken, W.T., Ocker, M., Planz, O. (2020a). Potential of proteasome inhibitors to inhibit cytokine storm in critical stage COVID-19 patients. eprint arXiv:2008.10404. [Google Scholar]
  • Kircheis, R., Haasbach, E., Lueftenegger, D., Heyken, W.T., Ocker, M., Planz, O. (2020b). NF-kB pathway as a potential target for treatment of critical stage COVID-19 patients. Front Immunol. https://doi.org/10.3389-fimmu.2020.598444. [PubMed] [Google Scholar]
  • Kniepert, A., Groettrup, M. (2014). The unique functions of tissue-specific proteasomes. Trends Biochem Sci, 39, 17-24. [CrossRef] [PubMed] [Google Scholar]
  • Koguchi, Y., Kohno, J., Nishio, M., Takahashi, K., Okuda, T., Ohnuki, T., Komatsubara, S. (2000). TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J Antibiot (Tokyo), 53, 105-109. [CrossRef] [PubMed] [Google Scholar]
  • Komander, D., Rape, M. (2012). The ubiquitin code. Ann Rev Biochem, 81, 203-229. [CrossRef] [PubMed] [Google Scholar]
  • Konstantinova, I.M., Tsimokha, A.S., Mittenberg, A.G. (2008). Role of proteasomes in cellular regulation. Int Rev Cell Mol Biol, 267, 59-124. [CrossRef] [PubMed] [Google Scholar]
  • Koroleva, O.N., Pham, T.H., Bouvier, D., Dufau, L., Qin, L., Reboud-Ravaux, M., Ivanov, A.A., Zhuze, A.L., Gromova, E.S., Bouvier-Durand, M. (2015). Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle. Biochimie, 108, 94-100. [CrossRef] [PubMed] [Google Scholar]
  • Kubiczkova, L., Pour, L., Sedlarikova, L., Hajek, R., Sevcikova, S. (2014). Proteasome inhibitors − molecular basis and current perspectives in multiple myeloma. J Cell Mol Med, 18, 947-961. [CrossRef] [PubMed] [Google Scholar]
  • Kupperman, E., Lee, E.C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., Yu, J., Yang, Y., Hales, P., Bruzzese, F., Liu, J., Blank, J., Garcia, K., Tsu, C., Dick, L., Fleming, P., Yu, L., Manfredi, M., Rolfe, M., Bolen, J. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res, 70, 1970-1980. [CrossRef] [PubMed] [Google Scholar]
  • Johnson, H.W.B., Lowe, E., Anderl, J.L., Fan, A., Muchamuel, T., Bowers, S., Moebius, D.C., Kirk, C., McMinn, D.L. (2018). Required immunoproteasome subunit inhibition profile for anti-inflammatory efficacy and clinical candidate KZR-616 ((2 S, 3 R)- N −((S)-3-(cyclopent-1-En-1-Yl)-1-((R)-2-methyloxiran-2-Yl)-1-oxopropan-2-Yl)-3-hydroxy-3-(4-methoxyphenyl)-2-((S)-2-(2-morpholino-acetamido)propanamido)propenamide). J Med Chem, 61, 11127-11143. [CrossRef] [PubMed] [Google Scholar]
  • Lander, C.G., Estrin, E., Matyskiela, M.E., Bashore, C., Nogamls, E., Martin, A. (2012). Complete subunit architecture of the proteasome regulatory particle. Nature, 482, 186-191. [CrossRef] [PubMed] [Google Scholar]
  • Lasker, K., Förster, F., Bohn, S., Walzthoeni, T., Villa, E., Unverdorben, P., Beck, F., Aebersold, R., Sali, A., Baumeister, W. (2012). Molecular architecture of the 26S proteasome holocomplex determined by an integrative method. Proc Natl Acad Sci USA, 109, 1380-1387. [CrossRef] [Google Scholar]
  • Le Chapelain, C., Groll, M. (2016) Rational design of proteasome inhibitors as antimalarial drugs. Angew Chem Int Ed, 55, 6370-6372. [CrossRef] [Google Scholar]
  • Lecker, S.H., Goldberg, A.L., Mitch, W.E. (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and diseases states. J Am Soc Nephrol, 17, 1807-1819. [CrossRef] [PubMed] [Google Scholar]
  • Lee, B.H., Lee, M.J., Park, S., Oh, D.-C., Elsasser, S., Che, P.-C., Gartner, C., Dimova, N., Hanna, J., Gugi, S.P., Wilson, S.M., King, R.W., Finley, D. (2010). Enhancement of proteasome activity by a small inhibitor of USP14. Nature, 467, 179-184. [CrossRef] [PubMed] [Google Scholar]
  • Lee, B.H., Lu, Y., Prado, M.A., Shi, Y., Tian, G., Elsasser, S., Gygi, S.P., King, R.W., Finley, D. (2016). USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature, 532, 398-401. [CrossRef] [PubMed] [Google Scholar]
  • Lee, M.J., Miller, Z., Park, J.E., Bhattarai, D., Lee, W., Kim, K.B. (2019). H727 cells are inherently resistant to the proteasome inhibitor carfilzomib, yet require proteasome activity for cell survival and growth. Sci Rep, 9(1), Article 4089. https://doi.org/10.1038/s41598-019-40635-1. [PubMed] [Google Scholar]
  • Li, H., Tsu, C., Blackburn, C., Li, G., Hales, P., Dick, L., Bogyo, M. (2014). Identification of potent and selective non-covalent inhibitors of the Plasmodium falciparum proteasome. J Am Chem Soc, 136, 13562-13565. [CrossRef] [PubMed] [Google Scholar]
  • Li, H., O’Donoghue, A.J., van der Linden, W.A., Xie, S.C., Yoo, E., Foe, I.T., Tilley, L., Craik, C.S., da Fonseca, P.C.A., Bogyo, M. (2016). Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature, 530, 233-236. [CrossRef] [PubMed] [Google Scholar]
  • Lin, G., Li, D., de Carvalho, L.P., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J.D., Li, H., Nathan, C. (2009). Inhibitors selective for Mycobacterium versus human proteasomes. Nature, 461, 621-626. [CrossRef] [PubMed] [Google Scholar]
  • Lin, G., Chidawanyika, T., Tsu, C., Warrier, T., Vaubourgeix, J., Blackburn, C., Gigstad, K., Sintchak, M., Dick, L., Nathan, C. (2013). N, C-capped dipeptides with selectivity for Mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J Am Chem Soc, 135, 9968-9971. [CrossRef] [PubMed] [Google Scholar]
  • Lokireddy, S., Kukushkin, N.V., Goldberg, A.L. (2015). cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA, 112, E7176-E7185. [CrossRef] [Google Scholar]
  • Longhitano, L., Tibullo, D., Giallongo, C. Lazzarino, G., Tartaglia, N., Galimberti, S., Li Volti, G., Palumbo, G.A., Liso, A. (2020). Proteasome inhibitors as a possible therapy for SARS-CoV-2. Int J Mol Sci, 21, 3622-3633. [CrossRef] [Google Scholar]
  • Löwe, J., Stock, D., Jap, B., Zwicki, P., Baumeister, W., Huber, R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science, 268, 533-539. [CrossRef] [PubMed] [Google Scholar]
  • Luan B., Huang, X., Wu, J, Mei, Z., Wang, Y., Xue, X., Yan, C., Wang, J., Finley, D.J., Shi, Y., Wang, F. (2016). Structure of an endogenous yeast proteasome reveals two major conformational states. Proc Natl Acad Sci USA, 113, 2642-2647. [CrossRef] [Google Scholar]
  • Luo, H. (2016). Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr Opin Virol, 17, 1-10. [CrossRef] [PubMed] [Google Scholar]
  • McShane, E., Sin, C., Zauber, H., Wells, J.N., Donnelly, N., Wang, Y., Hou, J., Chen, W., Storchova, Z., Marsh, J.A., Valleriani, A., Selbach, M. (2016). Kinetic analysis of protein stability reveals age-dependent degradation. Cell, 167, 803-815. [CrossRef] [PubMed] [Google Scholar]
  • Mammen, M., Choi, S.-K., Whitesides, G.M. (1988). Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed, 37, 2754-2794. [CrossRef] [Google Scholar]
  • Manasanch, E.E., Orlowski, R.Z. (2017). Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol, 14, 417-433. [CrossRef] [PubMed] [Google Scholar]
  • Maréchal, X., Pujol, A., Richy, N., Genin, E., Basse, N., Reboud-Ravaux, M., Vidal, J. (2012). Noncovalent inhibition of 20S proteasome by pegylated dimerized inhibitors. Eur J Med Chem, 52, 322-327. [CrossRef] [PubMed] [Google Scholar]
  • Maréchal, X., Genin, E., Qin, L., Sperandio, O., Montes, M., Basse, N., Richy, N., Miteva, M.A., Reboud-Ravaux, M., Vidal, J., Villoutreix, B.O. (2013). 1, 2, 4-Oxadiazoles Identified by virtual screening and their non-covalent inhibition of the human 20S proteasome. Current Med Chem, 20, 2351-2362. [CrossRef] [Google Scholar]
  • Mirabella, A.C., Pletnev, A.A., Downey, S.L., Florea, B.I., Shabaneh, T.B., Britton, M., Verdoes, M., Filippov, D.V., Overkleeft, H.S., Kisselev, A.F. (2011). Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem Biol, 18, 608-618. [CrossRef] [PubMed] [Google Scholar]
  • Moreau, P., Pylypenko, H., Grosicki, S., Karamanesht, I., Leleu, X., Grishunina, M., Rekhtman, G., Masliak, Z., Robak, T., Shubina, A., Arnulf, B., Kropff, M., Cavet, J., Esseltine, D.L., Feng, H., Girgis, S., van de Velde, H., Deraedt, W., Harousseau, J.L. (2011). Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomized, Phase 3, non-inferiority study. Lancet Oncol, 12, 431-440. [CrossRef] [PubMed] [Google Scholar]
  • Moreau, P., Richardson, P. G., Cavo, M., Orlowski, R.Z., San Miguel, J.F., Palumbo, A., Harousseau, J.-L. (2012). Proteasome inhibitors in multiple myeloma: 10 years later. Blood, 120, 947-959. [CrossRef] [PubMed] [Google Scholar]
  • Murata, S., Takahama, Y., Kasahara, M., Tanaka, K. (2018). The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol, 19, 923-931. [CrossRef] [PubMed] [Google Scholar]
  • Myeku, N., Clelland, C.L., Emrani, S., Kukushi, N.V., Yu, W.H., Goldberg, A.L. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med, 22, 46-53. [CrossRef] [PubMed] [Google Scholar]
  • Nadeem, O., Tai, Y.-T., Anderson, K.C. (2020). Immunotherapeutic and targeted approaches in multiple myeloma. Immunotargets Ther, 9, 201-215. [CrossRef] [PubMed] [Google Scholar]
  • Nakatogawa, H., Suzuki, K., Kamada, Y., Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10, 458-467. [CrossRef] [PubMed] [Google Scholar]
  • Njomen, E., Tepe, J.J. (2019). Proteasome activation as a new therapeutic approach to target proteotoxic disorders. J Med Chem, 62, 6469-6581. [CrossRef] [PubMed] [Google Scholar]
  • Noda, C., Tanahashi, N., Shimbara, N., Hendim, K.B., Tanaka, K. (2000). Tissue distribution of constitutive proteasomes, immunoproteasomes and PA28 in rats. Biochem Biophys Res Commun, 277, 348-354. [CrossRef] [PubMed] [Google Scholar]
  • Nunez, A.T., Annuziata, C.M. (2017). Proteasome inhibitors: structure and function. Semin Oncol, 44, 377-380. [CrossRef] [PubMed] [Google Scholar]
  • Ortega, J., Heymann, J.B., Kajava, A.V., Ustrell, V., Rechsteiner, M., Steven, A.C. (2005). The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J Mol Biol, 346, 1221-1227. [CrossRef] [PubMed] [Google Scholar]
  • Pérez-Galan, P., Roué, G., Villamor, N., Montserrat, E., Campo, E., Colomer, D. (2006). The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood, 107, 257-264. [CrossRef] [PubMed] [Google Scholar]
  • Peth, A., Uchiki, T., Goldberg, A.L. (2010). ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol Cell, 40, 7781-7790. [CrossRef] [Google Scholar]
  • Pham, T.H., Hovhannisyan, A., Bouvier, D., Tian, L., Reboud-Ravaux, M., Melikyan, G., Bouvier-Durand, M. (2012). A new series of N5 derivatives of the 1, 1, 5-trimethyl furo[3, 4-c]pyridine-3, 4-dione (cerpegin) selectively inhibits the post-acid activity of mammalian 20S proteasomes. Bioorg Med Chem Lett, 22, 3822-3827. [CrossRef] [PubMed] [Google Scholar]
  • Pickard, C.M., Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 1695, 55-72. [CrossRef] [PubMed] [Google Scholar]
  • Pickering, A.M., Davies, K.J.A. (2012). Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and PA200 in the degradation of oxidized proteins. Arch Biochem Biophys, 523, 181-190. [CrossRef] [PubMed] [Google Scholar]
  • Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E., Matouschek, A. (2004). An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol, 11, 830-837. [CrossRef] [PubMed] [Google Scholar]
  • Raaben, M., Posthuma, C.C., Verheije, M.H., Lintelo, E.G., Kikkert, M., Drijfhout, J.W., Snijder, E.J., Rottier, P.J., de Haan, C.A.M. (2010). The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle. J Virol, 84, 7869-7879. [CrossRef] [PubMed] [Google Scholar]
  • Reboud-Ravaux, M. (2021). Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée pharmacologique. Biol Aujourd’hui, 215. [Google Scholar]
  • Richy, N., Sarraf, D., Maréchal, X., Janmamode, N., Le Guével, R., Genin, E., Reboud-Ravaux, M., Vidal, J. (2018). Structure-based design of human immuno- and constitutive proteasomes inhibitors. Eur J Med Chem, 145, 570-587. [CrossRef] [PubMed] [Google Scholar]
  • Rousseau, A., Bertolotti, A. (2018). Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol, 19, 697-712. [CrossRef] [PubMed] [Google Scholar]
  • Sadre-Bazzaz, K., Whitby, F.G., Robinson, H., Formosa, T., Hill, C.P. (2010). Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell, 37, 728-735. [CrossRef] [PubMed] [Google Scholar]
  • Saeki, Y. (2017). Ubiquitin recognition by the proteasome. J Biochem, 161, 113-124. [PubMed] [Google Scholar]
  • Sanchez-Serrano, I. (2006). Success in translational research: lessons from the development of bortezomib. Nat Rev Drug Discov, 5, 107-114. [CrossRef] [PubMed] [Google Scholar]
  • Schechter, I., Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun, 27, 157-162. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt, M., Finley, D. (2014). Regulation of proteasome activity in health and disease. Biochim Biophys Acta, 1843, 13-25. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt, C., Berger, T., Groettrup, M., Basler, M. (2018). Immunoproteasome inhibition impairs T and B cell activation by restraining ERK signaling and proteostasis. Front Immunol, article 02386. [PubMed] [Google Scholar]
  • Schoenheimer, R., The dynamic state of body constituents, Harvard University Press, Cambridge, MA, 1942. [Google Scholar]
  • Schrader, J., Henneberg, F., Ricardo A., Mata, R.A., Tittmann, K., Schneider, T.R., Stark, H., Bourenkov, G., Chari, A. (2016). The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science, 353, 594-598. [CrossRef] [PubMed] [Google Scholar]
  • Sherman, D.J., Li, J. (2020). Proteasome inhibitors: harnessing proteostasis to combat disease. Molecules, 25, 671-701. [CrossRef] [Google Scholar]
  • Shi, Y., Chen, X., Elsasser, S., Stocks, B.B, Tian, G., Lee, B.H., Shi, Y., Zhang, N., de Poot, S.A.H., Tuebing, F., Sun, S., Vannoy, J., Tarasov, S.G., Engen, J.R., Finley, D., Walters, K.J. (2016). Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science, 351, aad942. [CrossRef] [Google Scholar]
  • Smith, M.H., Ploegh, H.L., Weissman, J.S. (2011). Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science, 334, 1086-1090. [CrossRef] [PubMed] [Google Scholar]
  • Tanahashi, N., Murakami, Y., Minami, Y., Shimbara, N., Hendil, K.B., Tanaka, K. (2000). Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem, 275, 14336-14345. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka, K., Yoshimura, T., Kumatori, A., Ichihara, A., Ikai, A., Nishigai, M., Kameyama, K., Takagi, T. (1988). Proteasomes (multi-protease complexes) as 20S ring-shaped particles in a variety of eukaryotic cells. J Biol Chem, 263, 16209-16217. [CrossRef] [PubMed] [Google Scholar]
  • Thrower, J.S., Hoffman, L., Rechsteiner, M., Pickart, C.M. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO J, 19, 94-102. [CrossRef] [PubMed] [Google Scholar]
  • Tomko, R.J., Hochstrasser, M. (2013). Molecular architecture and assembly of the eukaryotic proteasome. Ann Rev Biochem, 82, 415-445. [CrossRef] [PubMed] [Google Scholar]
  • Totaro, K.A., Barthelme, D., Simpson, P.T., Jiang, X., Lin, G., Nathan, C.F., Sauer, R.T., Sello, J.K. (2017). Rational design of selective and bioactive inhibitors of the Mycobacterium tuberculosis proteasome. ACS Infect Dis, 3, 176-181. [CrossRef] [PubMed] [Google Scholar]
  • Tundo, G.R., Sbarella, D., Santoro, A.M., Coletta, A., Oddone, F., Grasso, G., Milardi, D., Lacal, P.M., Marini, S., Purello, R., Graziani, G., Coletta, M. (2020). The proteasome as a druggable target with multiple therapeutic potentialities: cutting and not cutting edges. Pharm Therap, 213, 1-66. [CrossRef] [Google Scholar]
  • Uechi, H., Hamazaki, J., Murata, S. (2014). Characterization of the testis-specific proteasome subunit α4s in mammals. J Biol Chem, 289, 12365-12374. [CrossRef] [PubMed] [Google Scholar]
  • Unno, M., Mizushima, T., Moromoto, Y., Tomisugi, Y, Tanaka, K., Yasuoka, N., Tsukihara, T. (2002). The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure, 10, 609-618. [CrossRef] [PubMed] [Google Scholar]
  • Varshavsky, A. (1991). Naming a targeting signal. Cell, 64, 13-15. [CrossRef] [PubMed] [Google Scholar]
  • Varshavsky, A. (2019). N-degron and C-degron pathways of protein degradation. Proc Natl Acad Sci USA, 116, 358-366. [CrossRef] [Google Scholar]
  • Verdoes, M., Willems, L.I., van der Linden, W.A., Duivenvoorden, B.A., van der Marel, G.A., Florea, B.I., Kisselev, A.F., Overkleeft, H.S. (2010). A Panel of Subunit-Selective Activity-Based Proteasome Probes. Org Biomol Chem, 8, 2719-2727. [CrossRef] [PubMed] [Google Scholar]
  • VerPlanck, J.J.S., Goldberg, A.L. (2018). Regulating protein breakdown through proteasome phosphorylation. Biochem J, 474, 3355-3371. [CrossRef] [Google Scholar]
  • VerPlanck, J.J.S., Lokireddy, S., Zhao, J., Godlberg, A.L. (2019). 26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc Natl Acad Sci USA, 116, 4228-4237. [CrossRef] [Google Scholar]
  • Villoutreix, B.O., Khatib, A.M., Cheng, Y., Miteva, M.A., Maréchal, X., Vidal, J., Reboud-Ravaux, M. (2017). Blockade of the malignant phenotype by β-subunit selective noncovalent inhibition of immuno- and constitutive proteasomes. Oncotarget, 8, 10437-10449. [CrossRef] [PubMed] [Google Scholar]
  • Whitby, F.G., Masters, E.I., Kramer, L., Knowlton, J.R., Yao, Y., Wang, C.C., Hill, C.P. (2000). Structural basis for the activation of 20 S proteasomes by 11 S regulators. Nature, 408, 115-120. [CrossRef] [PubMed] [Google Scholar]
  • Wilkinson, K.D., Urban, M.K., Haas, A.L. (1980). Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem, 255, 7529-7532. [CrossRef] [PubMed] [Google Scholar]
  • Winter, M.B., La Greca, F., Arastu-Kapur, S., Caiazza, F., Cimermancic, P., Buchholz, T.J., Anderl, J.L., Ravalin, M., Bohn, M.F., Sali, A., O’Donoghue, A.J., Craik, C. (2017). Immunoproteasome functions explained by divergence in cleavage specificity and regulation. eLife, 6, e27364. [CrossRef] [PubMed] [Google Scholar]
  • Wu, X., Rapoport, T.A. (2018). Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol, 53, 22-28. [CrossRef] [PubMed] [Google Scholar]
  • Wu, X., Siggel, M., Ovchinnikov, S., Mi, W., Svetlov, V. (2020). Structural basis of ER-associated protein degradation mediated by Hrd1 ubiquitin ligase complex. Science, 368, 6489, eaaz2449. [Google Scholar]
  • Xin, B.T., Huber, E.M., de Bruin, G., Heinemeyer, W., Mauritis, E., Espinal, C., Du, Y., Janssens, M., Weyburne, E.S, Kisselev, A.F., Florea, B.I., Driessen, C., van der Marel, G.A., Groll, M., Overkleeft, H.S. (2019). Structure-based design of inhibitors selective for human proteasome β2c or β2i subunits. J Med Chem, 62, 1626-1642. [CrossRef] [PubMed] [Google Scholar]
  • Yu, H., Matouschek, A. (2017). Recognition of client proteins by the proteasome. Ann Rev Biophys, 46, 149-173. [CrossRef] [Google Scholar]
  • Zhan, W., Hsu, H.-C., Morgan, T., Ouellette, T., Burns-Huang, K., Hara, R., Wright, A.G., Meinke, P.T., Foley, M., Nathan, C.F., Li, H., Lin, G. (2019). Selective phenylimidazole-based inhibitors of the Mycobacterium tuberculosis proteasome. J Med Chem, 62, 9246-9253. [CrossRef] [PubMed] [Google Scholar]
  • Zhan, W., Zhang, H., Ginn, J., Leung, A., Liu, Y.J., Michino, M., Toita, A., Okamoto, R., Wong, T.T., Imaeda, T., Hara, R., Yukawa, T., Chelebieva, S., Tumwebaze, P.K., Lafuente-Monasterio, M.J., Martinez-Martinez, M.S., Vendome, J., Beuming, T., Sato, K., Aso, K., Rosenthal, P.J., Cooper, R.A., Meinke, P.T., Nathan, C.F., Kirkman, L.A., Lin, G. (2021). Development of a highly selective Plasmodium falciparum proteasome inhibitor with anti-malaria activity in humanized mice. Angew Chem Int Ed Engl, Jan 12. https://doi.org/10.1002/ange.202015845. [PubMed] [Google Scholar]
  • Zhang, Z.-H., Jiang, T.-X., Chen, L.-B., Zhou, W., Liu, Y., Gao, F., Qiu, X.-B. (2021). Proteasome subunit α4s is essential for formation of spermatoproteasomes and histone degradation during meiotic DNA repair in spermatocytes. J Biol Chem, 296, 1-14. [Google Scholar]
  • Zerfas, B.L., Trader, D.J. (2019). Monitoring the immunoproteasome in live cells using an activity-based peptide-peptoid hybrid probe. J Am Chem Soc, 141, 525. [CrossRef] [Google Scholar]
  • Zerfas, B.L., Maresh, M.E., Trader, D.J. (2020). The immunoproteasome : an emerging target in cancer and autoimmune and neurological disorders. J Med Chem, 63, 1841-1858. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.