Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 217, Numéro 1-2, 2023
Page(s) 79 - 87
DOI https://doi.org/10.1051/jbio/2023020
Publié en ligne 6 juillet 2023
  • Akiki, T.J., Averill, C.L., Abdallah, C.G. (2017). A network-based neurobiological model of PTSD: Evidence from structural and functional neuroimaging studies. Curr Psychiatry Rep, 19, 81. [CrossRef] [PubMed] [Google Scholar]
  • Alexander-Bloch, A., Lambiotte, R., Roberts, B., Giedd, J., Gogtay, N., Bullmore, E. (2012). The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia. NeuroImage, 59, 3889-3900. [CrossRef] [PubMed] [Google Scholar]
  • Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24, 663-676. [CrossRef] [PubMed] [Google Scholar]
  • Amico, E., Abbas, K., Duong-Tran, D.A., Tipnis, U., Rajapandian, M., Chumin, E., Ventresca, M., Harezlak, J., Goñi, J. (2021). Toward an information theoretical description of communication in brain networks. Netw Neurosci, 5, 646-665. [PubMed] [Google Scholar]
  • Anderson, M., Chemero, A., The brain evolved to guide action, in: The Wiley handbook of evolutionary neuroscience, John Wiley & Sons Ltd, 2016, pp. 1-20. [Google Scholar]
  • Anderson, M.L., Kinnison, J., Pessoa, L. (2013). Describing functional diversity of brain regions and brain networks. NeuroImage, 73, 50-58. [CrossRef] [PubMed] [Google Scholar]
  • Avena-Koenigsberger, A., Misic, B., Sporns, O. (2018). Communication dynamics in complex brain networks. Nat Rev Neurosci, 19, 17-33. [CrossRef] [Google Scholar]
  • Bassett, D.S., Sporns, O. (2017). Network neuroscience. Nat Neurosci, 20, 353-364. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T. (2011). Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA, 108, 7641-7646. [CrossRef] [PubMed] [Google Scholar]
  • Bassett, D.S., Yang, M., Wymbs, N.F., Grafton, S.T. (2015). Learning-induced autonomy of sensorimotor systems. Nat Neurosci, 18, 744-751. [CrossRef] [PubMed] [Google Scholar]
  • Betzel, R.F., Fukushima, M., He, Y., Zuo, X.-N., Sporns, O. (2016). Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks. NeuroImage, 127, 287-297. [CrossRef] [PubMed] [Google Scholar]
  • Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nat Neurosci, 20, 340-352. [CrossRef] [PubMed] [Google Scholar]
  • Breukelaar, I.A., Bryant, R.A., Korgaonkar, M.S. (2021). The functional connectome in post-traumatic stress disorder. Neurobiol Stress, 14, 100321. [CrossRef] [PubMed] [Google Scholar]
  • Bullmore, E., Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 10, 186-198. [CrossRef] [MathSciNet] [Google Scholar]
  • Bullmore, E.T., Bassett, D.S. (2011). Brain graphs: Graphical models of the human brain connectome. Ann Rev Clin Psychol, 7, 113-140. [CrossRef] [PubMed] [Google Scholar]
  • Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83, 238-251. [CrossRef] [PubMed] [Google Scholar]
  • Cole, M.W., Ito, T., Bassett, D.S., Schultz, D.H. (2016). Activity flow over resting-state networks shapes cognitive task activations. Nat Neurosci, 19, 1718-1726. [CrossRef] [PubMed] [Google Scholar]
  • Dai, Y., Zhou, Z., Chen, F., Zhang, L., Ke, J., Qi, R., Lu, G., Zhong, Y. (2023). Altered dynamic functional connectivity associates with post-traumatic stress disorder. Brain Imaging Behav, 17, 294-305. [CrossRef] [PubMed] [Google Scholar]
  • Deco, G., Kringelbach, M.L. (2014). Great expectations: Using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron, 84, 892-905. [CrossRef] [PubMed] [Google Scholar]
  • Deco, G., Tononi, G., Boly, M., Kringelbach, M.L. (2015). Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci, 16, 430-439. [CrossRef] [MathSciNet] [Google Scholar]
  • Deco, G., Kringelbach, M.L., Jirsa, V.K., Ritter, P. (2017). The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core. Sci Rep, 7, 3095. [Google Scholar]
  • Dunsmoor, J.E., Cisler, J.M., Fonzo, G.A., Creech, S.K., Nemeroff, C.B. (2022). Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron, 110, 1754-1776. [CrossRef] [PubMed] [Google Scholar]
  • Fornito, A., Zalesky, A., Breakspear, M. (2015). The connectomics of brain disorders. Nat Rev Neurosci, 16, 159-172. [CrossRef] [PubMed] [Google Scholar]
  • Fransson, P., Strindberg, M. (2023). Brain network integration, segregation and quasi-periodic activation and deactivation during tasks and rest. NeuroImage, 268, 119890. [CrossRef] [PubMed] [Google Scholar]
  • Goni, J., van den Heuvel, M.P., Avena-Koenigsberger, A., Velez de Mendizabal, N., Betzel, R.F., Griffa, A., Hagmann, P., Corominas-Murtra, B., Thiran, J.-P., Sporns, O. (2014). Resting-brain functional connectivity predicted by analytic measures of network communication. Proc Natl Acad Sci USA, 111, 833-838. [CrossRef] [PubMed] [Google Scholar]
  • Ito, T., Hearne, L., Mill, R., Cocuzza, C., Cole, M.W. (2020). Discovering the computational relevance of brain network organization. Trends Cogn Sci, 24, 25-38. [Google Scholar]
  • Jin, C., Jia, H., Lanka, P., Rangaprakash, D., Li, L., Liu, T., Hu, X., Deshpande, G. (2017). Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Hum Brain Mapp, 38, 4479-4496. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kalisch, R, Baker, D.G., Basten, U., Boks, M.P., Bonanno, G.A., Brummelman, E., Chmitorz, A., Fernàndez, G., Fiebach, C.J., Galatzer-Levy, I., Geuze, E., Groppa, S., Helmreich, I., Hendler, T., Hermans, E.J., Jovanovic, T., Kubiak, T., Lieb, K., Lutz, B., Müller, M.B., Murray, R.J., Nievergelt, C.M., Reif, A., Roelofs, K., Rutten, B.P.F., Sander, D., Schick, A., Tüscher, O., Diest, I.V., Harmelen, A.V., Veer, I.M., Vermetten, E., Vinkers, C.H., Wager, T.D., Walter, H., Wessa, M., Wibral, M., Kleim, B. (2017). The resilience framework as a strategy to combat stress-related disorders. Nat Hum Behav, 1, 784-790. [CrossRef] [PubMed] [Google Scholar]
  • Kelso, J.A.S. (2012). Multistability and metastability: Understanding dynamic coordination in the brain. Philos Trans R Soc Lond, B, Biol Sci, 367, 906-918. [CrossRef] [PubMed] [Google Scholar]
  • Lebois, L.A.M., Li, M., Baker, J.T., Wolff, J.D., Wang, D., Lambros, A.M., Grinspoon, E., Winternitz, S., Ren, J., Gönenç, A., Gruber, S.A., Ressler, K.J., Liu, H., Kaufman, M.L. (2021). Large-scale functional brain network architecture changes associated with trauma-related dissociation. Am J Psychiatry, 178, 165-173. [CrossRef] [PubMed] [Google Scholar]
  • Lord, L.-D., Stevner, A.B., Deco, G., Kringelbach, M.L. (2017). Understanding principles of integration and segregation using whole-brain computational connectomics: Implications for neuropsychiatric disorders. Philos Trans Royal Soc, 375, 20160283. [MathSciNet] [Google Scholar]
  • Mattar, M.G., Cole, M.W., Thompson-Schill, S.L., Bassett, D.S. (2015). A functional cartography of cognitive systems. PLoS Comput Biol, 11, e1004533. [CrossRef] [PubMed] [Google Scholar]
  • Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn Sci, 15, 483-506. [Google Scholar]
  • Murphy, A.C., Bertolero, M.A., Papadopoulos, L., Lydon-Staley, D.M., Bassett, D.S. (2020). Multimodal network dynamics underpinning working memory. Nat Commun, 11, 3035. [CrossRef] [PubMed] [Google Scholar]
  • Pitman, R.K., Rasmusson, A.M., Koenen, K.C., Shin, L.M., Orr, S.P., Gilbertson, M.W., Milad, M.R., Liberzon, I. (2012). Biological studies of post-traumatic stress disorder. Nat Rev Neurosci, 13, 769-787. [CrossRef] [PubMed] [Google Scholar]
  • Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., Petersen, S.E. (2011). Functional network organization of the human brain. Neuron, 72, 665-678. [CrossRef] [PubMed] [Google Scholar]
  • Puxeddu, M.G., Faskowitz, J., Betzel, R.F., Petti, M., Astolfi, L., Sporns, O. (2020). The modular organization of brain cortical connectivity across the human lifespan. NeuroImage, 218, 116974. [CrossRef] [PubMed] [Google Scholar]
  • Rangaprakash, D., Dretsch, M.N., Venkataraman, A., Katz, J.S., Denney, T.S., Deshpande, G. (2017). Identifying disease foci from static and dynamic effective connectivity networks: Illustration in soldiers with trauma. Hum Brain Mapp, 39, 264-287. [Google Scholar]
  • Ressler, K.J., Berretta, S., Bolshakov, V.Y., Rosso, I.M., Meloni, E.G., Rauch, S.L., Carlezon, W.A. (2022). Post-traumatic stress disorder: Clinical and translational neuroscience from cells to circuits. Nat Rev Neurol, 18, 273-288. [CrossRef] [PubMed] [Google Scholar]
  • Santoro, A., Battiston, F., Petri, G., Amico, E. (2023). Higher-order organization of multivariate time series. Nature Physics, 19, 221-229. [Google Scholar]
  • Schotten de, T.M., Forkel, S.J. (2022). The emergent properties of the connected brain. Science, 378, 505-510. [CrossRef] [PubMed] [Google Scholar]
  • Shaw, S., Terpou, B., Densmore, M., Theberge, J., Frewen, P., McKinnon, M., Lanius, R. (2022). Large-scale functional hyperconnectivity patterns characterizing trauma-related dissociation: A rs-fMRI study of PTSD and its dissociative subtype. PsyArXiv Oct. 7. Web. [Google Scholar]
  • Shin, L.M., Rauch, S.L., Pitman, R.K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci, 1071, 67-79. [CrossRef] [PubMed] [Google Scholar]
  • Shine, J.M., Bissett, P.G., Bell, P.T., Koyejo, O., Balsters, J.H., Gorgolewski, K.J., Moodie, C.A., Poldrack, R.A. (2016). The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron, 92, 544-554. [CrossRef] [PubMed] [Google Scholar]
  • Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol, 23, 162-171. [CrossRef] [PubMed] [Google Scholar]
  • Sporns, O. (2022). The complex brain: Connectivity, dynamics, information. Trends Cogn Sci, 26, 1066-1067. [Google Scholar]
  • Suo, X., Zuo, C., Lan, H., Li, W., Li, L., Kemp, G.J., Wang, S., Gong, Q. (2023). Multilayer network analysis of dynamic network reconfiguration in adults with posttraumatic stress disorder. Biol Psych Cogn Neurosci Neuroimaging, 8, 452-461. [Google Scholar]
  • Tognoli, E., Kelso, J.A.S. (2014). The metastable brain. Neuron, 81, 35-48. [CrossRef] [PubMed] [Google Scholar]
  • Uddin, L.Q., Yeo, B.T.T., Spreng, R.N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topography, 32, 926-942. [CrossRef] [PubMed] [Google Scholar]
  • van De Ville, D., Farouj, Y., Preti, M.G., Liégeois, R., Amico, E. (2021). When makes you unique: Temporality of the human brain fingerprint. Sci Adv, 7, eabj0751. [CrossRef] [Google Scholar]
  • Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nat Rev Neurosci, 2, 229-239. [CrossRef] [PubMed] [Google Scholar]
  • Wang, R., Liu, M., Cheng, X., Wu, Y., Hildebrandt, A., Zhou, C. (2021). Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc Natl Acad Sci USA, 118, e2022288118. [Google Scholar]
  • Wen, Z., Seo, J., Pace-Schott, E.F., Milad, M.R. (2022). Abnormal dynamic functional connectivity during fear extinction learning in PTSD and anxiety disorders. Mol Psychiatry, 27, 2216-2224. [CrossRef] [PubMed] [Google Scholar]
  • Wig, G.S. (2017). Segregated systems of human brain networks. Trends Cogn Sci, 21, 981-996. [Google Scholar]
  • Yehuda, R., Hoge, C.W., McFarlane, A.C., Vermetten, E., Lanius, R.A., Nievergelt, C.M., Hobfoll, S.E., Koenen, K.C., Neylan, T.C., Hyman, S.E. (2015). Post-traumatic stress disorder. Nat Rev Dis Primers, 1, 15057. [CrossRef] [PubMed] [Google Scholar]
  • Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L. (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol, 106, 1125-1165. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.