Accès gratuit
Numéro
J. Soc. Biol.
Volume 202, Numéro 3, 2008
Page(s) 231 - 239
Section Biologie des semences
DOI https://doi.org/10.1051/jbio:2008026
Publié en ligne 4 novembre 2008
  • Bailly C., Active oxygen species and antioxidants in seed biology. Seed Sci. Res., 2004, 14, 93–107. [CrossRef] [Google Scholar]
  • Bailly C., Benamar A., Corbineau F. & Côme D., Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiologia Plantarum, 1998, 104, 646–652. [CrossRef] [Google Scholar]
  • Boisson M., Gomord V., Audran C., Berger N., Dubreucq B., Granier F., Lerouge P., Faye L., Caboche M. & Lepiniec L., Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J., 2001, 20, 1010–1019. [Google Scholar]
  • Bove J., Jullien M. & Grappin P., Functional genomics in the study of seed germination. Genome Biology, 2001, 3, 1002–1005. [CrossRef] [Google Scholar]
  • Bove J., Lucas P., Godin B., Ogé L., Jullien M. & Grappin P., Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol. Biol., 2005, 57, 593–612. [Google Scholar]
  • Buitink J., Leprince O., Hemminga M.A. & Hoekstra F.A., Molecular mobility in the cytoplasm: an approach to describe and predict lifespan of dry germplasm. Proc. Nat. Acad. Sci. USA, 2000, 97, 2385–2390. [Google Scholar]
  • Cadman C.S.C., Toorop P.E., Hilhorst H.W.M. & Finch-Savage W.E., Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J., 2006, 46, 805–822. [CrossRef] [PubMed] [Google Scholar]
  • Chibani K., Ali-Rachedi S., Job C., Job D., Jullien M. & Grappin P., Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol., 2006, 142, 1493–1510. [CrossRef] [PubMed] [Google Scholar]
  • Clarke S.G., Aging as war between chemical and biochemical processes: Protein methylation and the recognition of age-damaged proteins for repair. Ageing Res. Rev., 2003, 2, 263–285. [CrossRef] [PubMed] [Google Scholar]
  • Clerkx E.J., El-Lithy M.E., Vierling E., Ruys G.J., Blankestijn-De Vries H., Groot S.P., Vreugdenhil D. & Koornneef M., Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol., 2004, 135, 432–443. [Google Scholar]
  • Confort A., The biology of ageing. Lancet., 1956, 19271, 772–778. [CrossRef] [Google Scholar]
  • Davies M.J., The oxidative environment and protein damage. Biochim. Biophys. Acta, 2005, 1703, 93–109. [Google Scholar]
  • Ellis R.H. & Roberts E.H., Improved equations for the prediction of seed longevity. Annals of Botany, 1980, 45, 13–30. [Google Scholar]
  • Finch-Savage W.E., Cadman C.S.C., Toorop P.E., Lynn J.R. & Hilhorst H.W.M., Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J., 2007, 51, 60–78 [Google Scholar]
  • Grappin P., Ogé L. & Bove J., Use of L-isoaspartyl methyltransferase as longevity marker in seeds. International patent: WO/2005/054499. [Google Scholar]
  • Harman D., Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 1956, 11, 298–300. [Google Scholar]
  • Holdsworth M.J., Finch-Savage W., Grappin P. & Job D., Post-genomics dissection of seed dormancy and germination. Trends in Plant Sci., 2008, 13, 7–13. [CrossRef] [Google Scholar]
  • Job C., Rajjou L., Lovigny Y., Belghazi M. & Job D., Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol., 2005, 138, 790–802. [CrossRef] [PubMed] [Google Scholar]
  • Kirkwood T.B.L. & Holliday R., The evolution of ageing and longevity. Proc. Soc. Lond. B., 1979, 205, 531–546. [CrossRef] [Google Scholar]
  • Kumar G.N.M., Robert L.H. & Knowles N.R., Age-induced protein modifications and decreased proteolysis in potato seed-tubers. Plant Physiol., 1999, 119, 8999–99. [Google Scholar]
  • Leopold A.C., Sun W.Q., & Bernal-Lugo I., The glassy state in seeds. Seed Sci. Res., 1994, 4, 267–274. [CrossRef] [Google Scholar]
  • Leubner-Metzger G., Formula -1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J., 2005, 41, 133–145. [CrossRef] [PubMed] [Google Scholar]
  • Leubner-Metzger G. & Finch-Savage W.E., Seed dormancy and the control of germination. Tansley review, New Phytologist, 2006, 171, 501–523. [Google Scholar]
  • McDonald M.B., Seed deterioration: Physiology, repair and assessment. Seed Sci. Technol., 1999, 27, 177–237. [Google Scholar]
  • Ogé L., Bourdais G., Bove J., Collet B., Godin B., Granier F., Boutin J.P., Job D., Jullien M. & Grappin P., Arabidopsis protein repair l-isoaspartyl methyltransferase1 is involved both in seed survival during storage and in germination vigor. 2008 Submitted [Google Scholar]
  • Pearl R. & Miner J.R., Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms. Q. Rev. Biol., 1935, 10, 60–79 [Google Scholar]
  • Priestley D.A., Seed aging. Implications for seed storage and persistence in soil. (Ithaca, NY: Cornell University Press). 1986. [Google Scholar]
  • Rajjou L., Lovigny Y., Job C., Belghazi M., Groot S.P.C. & Job D., Seed quality and germination. In Seeds: Biology, development and ecology, Navie S, Adkins S, Ashmore S, eds, CAB International, 2007, 324–332 [Google Scholar]
  • Sattler S.E., Gilliland L.U., Magallanes-Lundback M., Pollard M. & DellaPenna D., Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 2004, 16, 1419–1432. [Google Scholar]
  • Shen-Miller J., Mudgett M.B., Schopf J.W. Clarke S. & Berger R., Exceptional seed longevity and robust growth: Ancient sacred lotus from China. Am. J. Bot, 1995, 82, 1367–1380. [Google Scholar]
  • Sohal R.S., Mockett R.J. & Orr W.C., Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic. Biol. Med., 2002, 33, 575–586. [Google Scholar]
  • Somerville C. & Koornneef M., A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet., 2002, 3, 883–889. [Google Scholar]
  • Xu Q., Belcastro M.P., Villa S.T., Dinkins R.D., Clarke S.G. & Downie A.B., A second protein l-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Plant Physiol., 2004, 136, 2652–2664. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.