Accès gratuit
J. Soc. Biol.
Volume 202, Numéro 3, 2008
Page(s) 241 - 248
Section Biologie des semences
Publié en ligne 4 novembre 2008
  • Bailly C., Active oxygen species and antioxidants in seed biology. Seed Sci. Res., 2004, 14, 93–107. [Google Scholar]
  • Bailly C., Bogatek-Leszczynska R., Côme D. & Corbineau F., Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci. Res., 2002, 12, 47–55. [Google Scholar]
  • Bethke P.C., Libourel I.G., Aoyama N., Chung Y.Y., Still D.W. & Jones R.L., The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol., 2007, 143, 1173-1188. [Google Scholar]
  • Bewley J.D., Seed germination and dormancy. Plant Cell, 1997, 9, 1055–1066. [CrossRef] [PubMed] [Google Scholar]
  • Bogatek R., Gawroñska H. & Oracz K., Involvement of oxidative stress and ABA in CN-mediated elimination of embryonic dormancy in apple. Dans: Nicolas G., Bradford K.J., Côme D. & Pritchard H.W., éds. The biology of seeds: Recent research advances. Wallingford: CABI Publishing, 2003, 211–216. [Google Scholar]
  • Caliskan M. & Cuming AC., Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J., 1998, 15, 165–171. [Google Scholar]
  • Cohn M.A., Jones K.L., Chiles L.A. & Church, D.F., Seed dormancy in red rice. 7. Structure–activity studies of germination stimulants. Plant Physiol., 1989, 89, 879–882. [CrossRef] [PubMed] [Google Scholar]
  • Corbineau F., Bagniol S. & Côme D., Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel J. Bot., 1990, 39, 313–325. [Google Scholar]
  • Corbineau F., Gouble B., Lecat S. & Côme D., Stimulation of germination of dormant oat (Avena sativa L.) seeds by ethanol and other alcohols. Seed Sci. Res., 1991, 1, 21–28. [CrossRef] [Google Scholar]
  • Corbineau F. & Côme D., Germination of sunflower seeds as related to ethylene synthesis and sensitivity – an overview. Dans: Vendrell M., Klee H., Pech J. C. & Romojaro F., éds. Biology and biotechnology of the plant hormone ethylene III. Amsterdam: IOS Press, 2003, 216–221. [Google Scholar]
  • Cui K., Xing G., Liu X., Xing G. & Wang Y., Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci., 1999, 146, 9–16. [Google Scholar]
  • Desikan R., Hancock J.T., Bright J., Harrison J., Weir I., Hooley R. & Neill S.J., A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol., 2005, 137, 831–834. [Google Scholar]
  • El-Maarouf Bouteau H., Job C., Job D., Corbineau F. & Bailly C., ROS signaling in seed dormancy alleviation. Plant Signal. Behav., 2007, 2, 362–364. [Google Scholar]
  • Fath A., Bethke P.C. & Jones R.L., Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol., 2001, 126, 156–166. [Google Scholar]
  • Finch-Savage W.E. & Leubner-Metzger G., Seed dormancy and the control of germination. New Phytol., 2006, 171, 501–523. [Google Scholar]
  • Fontaine O., Huault C., Pavis N. & Billard J.P., Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant Physiol. Biochem., 1994, 32, 677–683. [Google Scholar]
  • Ghassemian M., Nambara E., Cutler S., Kawaide H., Kamiya Y. & McCourt P., Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell, 2000, 12, 1117–1126. [PubMed] [Google Scholar]
  • Gidrol X., Lin W.S., Degousee N., Yip S.F. & Kush A., Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur. J. Biochem., 1994, 224, 21–28. [Google Scholar]
  • Hendry G.A.F., Oxygen, free radical processes and seed longevity. Seed Sci. Res., 1993, 3, 141–153. [Google Scholar]
  • Hite D.R.C., Auh C. & Scandalios J.G., Catalase activity and hydrogen peroxide levels are inversely correlated in maize scutella during seed germination. Redox Rep., 1999, 4, 29–34. [Google Scholar]
  • Huang A.H.C., Trelease R.N. & Moore T.S., Plant peroxisomes. London: Academic Press, 1983. [Google Scholar]
  • Jabs T., Dietrich R.A. & Dangl J.L., Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 1996, 27, 1853–1856. [CrossRef] [Google Scholar]
  • Job C., Rajjou L., Lovigny Y., Belghazi M. & Job D., Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol., 2005, 138, 790–802. [CrossRef] [PubMed] [Google Scholar]
  • Johansson E., Olsson O. & Nyström T., Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J. Biol. Chem., 2004, 279, 22204–22208. [Google Scholar]
  • Joo J.H., Bae Y.S. & Lee J.S., Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol., 2001, 126, 1055–1060. [Google Scholar]
  • Lamb C. & Dixon R.A., The oxidative burst in plant disease resistance. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48, 251–275. [Google Scholar]
  • Maya-Ampudia V. & Bernal-Lugo I., Redox-sensitive target detection in gibberellic acid-induced barley aleurone layer. Free Radic. Biol. Med., 2006, 40, 1362–1368. [Google Scholar]
  • McDonald M.B., Seed deterioration: physiology, repair and assessment. Seed Sci. Tech., 1999, 27, 177–237. [Google Scholar]
  • Meinhard M. & Grill E., Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett., 2001, 508, 443–446. [Google Scholar]
  • Meinhard M., Rodriguez P.L. & Grill E., The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta, 2002, 214, 775–782. [CrossRef] [PubMed] [Google Scholar]
  • Moller I.M., Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52, 561–591. [Google Scholar]
  • Moller I.M., Jensen P.E. & Hansson A., Oxidative modifications to cellular components in plants. Ann. Rev. Plant Biol., 2007, 58, 459–481. [Google Scholar]
  • Morohashi Y., Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J. Exp. Bot., 2002, 53, 1643–1650. [Google Scholar]
  • Naredo M.E.B, Juliano A.B., Lu B.R., De Guzman F. & Jackson M.T., Responses to seed dormancy-breaking treatments in rice species (Oryza L.). Seed Sci. Tech., 1998, 26, 675–689. [Google Scholar]
  • Noctor G., De Paepe R. & Foyer C.H., Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci., 2007, 12, 125–34. [Google Scholar]
  • Nyström T., Role of oxidative carbonylation in protein quality control and senescence. EMBO J., 2005, 24, 1311–1317. [Google Scholar]
  • Ogawa K. & Iwabuchi M., A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol., 2001, 42, 286–291. [Google Scholar]
  • Oracz K., El-Maarouf Bouteau H., Farrant J.M., Cooper K., Belghazi M., Job C., Job D., Corbineau F. & Bailly C., ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J., 2007, 50, 452–465. [Google Scholar]
  • Orozco-Cardenas M.L., Narvaez-Vasquez J. & Ryan C.A., Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell, 2001, 13, 179–191. [PubMed] [Google Scholar]
  • Pei Z.M., Murata Y., Benning G., Thomine S., Klüsener B., Allen G.J., Grill E. & Schroeder J.I., Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 2000, 406, 731–734. [CrossRef] [PubMed] [Google Scholar]
  • Pellinen R.I., Korhonen M.S., Tauriainen A.A., Palva E.T. & Kangasjärvi J., Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol., 2002, 130, 549–560. [Google Scholar]
  • Penfield S., Pinfield-Wells H & Graham I.A., Lipid metabolism in seed dormancy. Dans: Bradford K. & Nonogaki H., éds. Seed development, dormancy and germination. Oxford: Blackwell Publishing, 2007, 133–152. [Google Scholar]
  • Priestley D.A., Seed aging. Implications for seed storage and persistence in the soil. Ithaca: Cornell University Press, 1986. [Google Scholar]
  • Priestley D.A., Werner B.G., Leopold A.C. & McBride M.B., Organic free radical levels in seeds and pollen: The effects of hydration and aging. Physiol. Plant., 1985, 64, 88–94. [Google Scholar]
  • Pukacka S. & Ratajczak E., Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. J. Plant Physiol., 2005, 162, 873–885. [Google Scholar]
  • Sarath G., Hou G., Baird L.M., Mitchell R.B., Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses. Planta, 2007, 226, 697–708. [CrossRef] [PubMed] [Google Scholar]
  • Schopfer P., Plachy C. & Frahry G., Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol., 2001, 125, 1591–1602. [Google Scholar]
  • Sun W.Q. & Leopold AC. The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol. Plant., 1995, 94, 94–104. [Google Scholar]
  • Surplus S.L., Jordan B.R., Murphy A.M., Carr J.P., Thomas B. & Mackerness S., Ultraviolet-B-induced responses in Arabidopsis thaliana: Role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ., 1998, 21, 685–694. [Google Scholar]
  • Tyler L., Thomas S.G., Hu J., Dill A., Alonso J.M., Ecker J.R. & Sun T.P., Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol., 2004, 135, 1008–1019. [Google Scholar]
  • Vertucci C.W. & Farrant J.M., Acquisition and loss of desiccation tolerance. Dans: Kigel J. & Galili G., éds. Seed development and germination. New York: Marcel Dekker, 1995, 237–271. [Google Scholar]
  • Wang K.L.C., Li H. & Ecker J.R., Ethylene biosynthesis and signaling networks. Plant Cell, 2002, 14, S131–S151. [PubMed] [Google Scholar]
  • Wang M., van der Meulen R.M., Visser K., Van Schaik H.P., Van Duijn B. & de Boer A.H., Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci. Res., 1998, 8, 129–137. [Google Scholar]
  • Wojtyla L., Garnczarska M., Zalewski T., Bednarski W., Ratajczak L. & Jurga S., A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J. Plant Physiol., 2006, 163, 1207–1220. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.