Accès gratuit
J. Soc. Biol.
Volume 202, Numéro 3, 2008
Page(s) 213 - 222
Section Biologie des semences
Publié en ligne 4 novembre 2008
  • Avelange-Macherel M.-H., Ly-Vu B., Delaunay J., Richomme P. & Leprince O., NMR metabolite profiling analysis reveals changes in phospholipid metabolism associated with the reestablishment of desiccation tolerance upon osmotic stress in germinated radicles of cucumber. Plant, Cell Environ. 2006, 29, 471–482. [Google Scholar]
  • Boudet J., Buitink J., Hoekstra F.A., Rogniaux H., Larre C., Satour P. & Leprince O., Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol., 2006, 140, 1418–1436. [CrossRef] [PubMed] [Google Scholar]
  • Buitink J. & Leprince O., Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology, 2004, 48, 215–228. [Google Scholar]
  • Buitink J., Ly Vu B., Satour P. & Leprince O., A physiological model to study the re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaertn. seeds. Seed Sci. Res., 2003, 13, 273–286. [CrossRef] [Google Scholar]
  • Buitink J., Leger J.L., Guisle I., Ly-Vu B., Wuillème S., Lamirault G., Le Bars A., Le Meur N., Becker A., Küster K. & Leprince O., Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to –tolerant stages in Medicago truncatula seeds. Plant J., 2006, 47, 735–750. [CrossRef] [PubMed] [Google Scholar]
  • Chakrabortee S, Boschetti C., Walton L.J., Sarkar S., Rubinsztein D.C. & Tunnacliffe A., Hydrophylic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc. Natl. Acad. Sci. USA, 2007, 104, 18073–18078. [Google Scholar]
  • Clegg J.S., Cryptobiosis - a peculiar state of biological organization. Comp. Biochem. Physiol. B., 2001, 128, 613–624. [Google Scholar]
  • Collett H., Shen A., Gardner M., Farrant J.M., Denby K.J. & Illing N., Towards transcript profiling of desiccation tolerance in Xerophyta humilis: construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiol. Plant., 2004, 122, 39–53. [CrossRef] [Google Scholar]
  • Cytryn, E.J., Sangurdekar, D.P., Streeter J.G., Franck W.L., Chang W.-S., Stacey G., Emerich D.W., Joshi T., Xu D. & Sadowsky M.J., Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-stress. J. Bacteriol., 2007, 6751–6762. [Google Scholar]
  • Fait A., Angelovici R., Less H., Ohad I., Urbanczyk-Wochniak E., Fernie A.R. & Galili G., Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol., 2006, 142, 839–854. [CrossRef] [PubMed] [Google Scholar]
  • Farrant J.J.M. & Kruger L.A., Longevity of dry Myrothamnus flabellifolius in simulated field conditions. Plant Growth Regul., 2001, 35, 109–120. [CrossRef] [Google Scholar]
  • Guidetti R. & Jönsson K.I., Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J. Zool., 2002, 257, 181–187. [CrossRef] [Google Scholar]
  • Goyal K., Walton L.J. & Tunnacliffe A., LEA proteins prevent protein aggregation due to water stress. Biochem. J., 2005, 388, 151–157. [CrossRef] [PubMed] [Google Scholar]
  • Georgieva K., Szigeti Z., Sarvari E., Gaspar L., Maslenkova L., Peeva V., Peli E. & Tuba Z., Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta, 2007, 225, 955–964. [CrossRef] [PubMed] [Google Scholar]
  • Hoekstra F.A., Golovina E.A. & Buitink J., Mechanisms of plant desiccation tolerance. Trends Plant Sci., 2001, 6, 431–438. [CrossRef] [PubMed] [Google Scholar]
  • Illing, N., Denby K.J., Collet H., Shen A. & Farrant J.M., The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr. Comp. Biol., 2005, 45, 771–787. [CrossRef] [PubMed] [Google Scholar]
  • Iturriaga G., Cushman M.A.F. & Cushman J.C., An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci., 2006, 170, 1173–1184. [CrossRef] [Google Scholar]
  • Jiang G., Wang Z., Shang H., Yang W., Hu Z., Phillips J. & Deng W., Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta, 2007, 225, 1405–1420. [CrossRef] [PubMed] [Google Scholar]
  • Leopold A.C., Membrane, Metabolism and Dry Organisms, 1986, Cornell University Press, 376p. [Google Scholar]
  • Leprince O., Harren F.J.M., Buitink J., Alberda M. & Hoesktra F.A., Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles. Plant Physiol. 2000, 122, 597–608. [Google Scholar]
  • Ma X.C., Kamran J., MacRae T.H., Clegg J.S., Russell J.M., Villeneuve T.S., Euloth M., Sun Y., Crowe J.H., Tablin F. & Oliver A.E., A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiol., 2005, 51, 15–28. [CrossRef] [Google Scholar]
  • Neale A.D., Blomstedt C.K., Bronson P., Le T.-N., Guthridge K., Evans J., Gaff D.F. & Hamill J.D., The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced by severe drought stress. Plant Cell Environ., 2000, 23, 265–277. [Google Scholar]
  • Oliver M.J., Dowd S.E., Zaragoza J., Mauget S.A. & Payton P.R., The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics, 2004, 5, 89. [CrossRef] [PubMed] [Google Scholar]
  • Potts M., Slaughter S.M., Hunneke F.-U., Garst J.F. & Helm R.F., Desiccation tolerance of prokaryotes: application of principles to human cells. Integr. Comp. Biol. 2005, 45, 800–809. [Google Scholar]
  • Proctor M.C.F. & Pence V.C., Vegetative tissues: Bryophytes, vascular resurrection plants and vegetative propagules. In Desiccation and survival in Plants. Drying without dying. Black M. & Pritchard H.W. CABI Oxon, 2002 pp 207–238. [Google Scholar]
  • Riera M., Figueras M., López C., Goday A. & Pagès M., Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc. Natl. Acad. Sci. USA, 2004, 101, 9879–9884. [CrossRef] [Google Scholar]
  • Röhrig H., Schmidt J., Colby T., Brautigam A., Hufnagel P. & Bartels D., Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ., 2006, 29, 1606–1619. [Google Scholar]
  • Shen-Miller J., Mudgett M.B., Schopf J.W., Clarke S. & Berger R., Exceptional seed longevity and robust growth : ancient sacred lotus from China. Amer. J. Bot. 1995, 82, 1367–1380. [Google Scholar]
  • Singh J., Kumar D., Ramakrishnan N., Singhal V., Jervis J., Garst J.F., Slaughter S.M., DeSantis A.M., Potts M. & Helm R.F., Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration. App. Environ. Microbiol. 2005, 71, 8752–8763. [Google Scholar]
  • Smith-Espinoza C.J., Phillips J.R., Salamini F. & Bartels D., Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance. Mol. Genet. Genomics 2005, 274, 364–372. [Google Scholar]
  • Tunnacliffe A. & Lapinski J., Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Phil. Trans. R. Soc. Lond. B., 2003, 358, 1755–1771. [CrossRef] [Google Scholar]
  • Tunnacliffe A. & Wise M.J., The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007, 94, 791–812. [Google Scholar]
  • Tunnacliffe A., Lapinski J. & McGee B., A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia, 2005, 546, 315–321. [CrossRef] [Google Scholar]
  • Viner R.I. & Clegg J.S., Influence of trehalose on the molecular chaperone activity of p26, a small heat shock/Formula -crystallin protein. Cell Stress Chap., 2001, 6, 126–135. [CrossRef] [Google Scholar]
  • Walters C., Wheeler L.M. & Grotenhuis J.M., Longevity of seeds stored in a genebank: species characteristics. Seed Sci. Res., 2005, 15, 1–20. [CrossRef] [Google Scholar]
  • Wang W., Meng B. Chen W., Ge X., Liu S. & Yu J., A proteomic study on postdiapaused embryonic development of brine shrimp (Artemia franciscana). Proteomics 2007, 7, 3580–3591. [Google Scholar]
  • Wolkers W.F., McCready S., Brandt W.F., Lindsey G.G. & Hoekstra F.A., Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta, 2001, 1544, 196–206. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.