Accès gratuit
J. Soc. Biol.
Volume 202, Numéro 3, 2008
Page(s) 201 - 211
Section Biocarburants du futur
Publié en ligne 4 novembre 2008
  • Benemann J. & Oswald W.J., Systems et economic analysis of microalgae ponds for conversion of CO2 to biomass. US DOE, Pittsburgh Energy Technology Centre, 1996. [Google Scholar]
  • Benemann J.R., CO2 mitigation with microalgae systems. Energy Conversion et Management, 1997, 38, S475-S479. [Google Scholar]
  • Benemann J., Feasibility analysis of photobiological hydrogen production. Int. J. Hydrogen Energy, 1997, 22, 979–987. [Google Scholar]
  • Borowitzka M.A., Commercial production of microalgae: ponds, tanks, tubes et fermenters. Journal of Biotechnology, 1999, 70, 313–321. [Google Scholar]
  • Bosma R., van Spronsen W.A., Tramper J. & Wijffels R.H., Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 2003, 15, 143–153. [Google Scholar]
  • Brown M.R., Dunstan G.A., Norwood S.J. & Miller K.A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. Journal of Phycology, 1996, 32, 64–73. [Google Scholar]
  • Carvalho A.P., Meireles L.A. & Malcata F.X., Microalgal reactors: A review of enclosed system designs et performances. Biotechnology Progress, 2006, 22, 1490–1506. [Google Scholar]
  • Carlsson A.S., van Beilen J.B., Möller R. & Clayton D., Micro- and Macro-algae: utility for industrial applications, in “EPOBIO: Realising the Economic Potential of Sustainable Resources – Bioproducts from Non-food Crops”, CPL Press, Berks, 2007. [Google Scholar]
  • Chisti Y., Biodiesel from microalgae. Biotechnology Advances, 2007, 25, 294–306. [Google Scholar]
  • Choi S.L., Suh I.S. & Lee C.G., Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme and Microbial Technology, 2003, 33, 403–409. [Google Scholar]
  • Crampon C., Boutin O. & Badens E., Supercritical Carbon Dioxide Extraction of Molecules of Interest from Microalgae and Seaweed, Journal of Supercritical Fluids, soumis. [Google Scholar]
  • Doucha J. & Straka F., Livanský K., Ulilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thinlayer photobioreactor. J. Appl. Phycol., 2005, 17, 403–412. [Google Scholar]
  • Doucha J., Livanský K., Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J. Appl. Phycol., 2006, 18, 811–826. [Google Scholar]
  • Haesman M., Diemar J., O'Connor W., Soushames T. & Foulkes L., Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs - a summary. Aquaculture Research, 2000, 31, 637–659. [Google Scholar]
  • Hallenbeck P.C. & Benemann J.R., Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 2002, 27, 1185–1193. [Google Scholar]
  • Hedges S.B., Blair J.E., Venturi M.L. & Shoe J.L., “A molecular timescale of eukaryote evolution and the rise of complex multicellular life.” BMC Evolutionary Biology, 2004 4: 2. [Google Scholar]
  • Huntley M. & Redalje D.G., CO2 Mitigation et Renewable Oil from Photosynthetic Microbes: A New Appraisal. Mitigation et Adaptation Strategies for Global Change, 2007, 12, 573–608. [Google Scholar]
  • Jimenez C., Cossio B.R., Labella D. & Niell F.X., The Feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture, 2003, 217, 179–190. [Google Scholar]
  • Keoleian G.A. & Volk T.A., Renewable energy from willow biomass crops: life cycle energy, environmental et economic performance. Critical Reviews in Plant Sciences, 2005, 24, 385–406. [Google Scholar]
  • Keeling P.J., Deane J.A., Hink-Schauer C., Douglas S.E., Maier U.-G. & McFadden G.I., “The secondary endosymbiont of the cryptomonad Guillardia theta contains Alpha-, Beta-, and Gamma-tubulin Genes.” Mol. Biol. Evol., 1999, 16, 1308–1313. [Google Scholar]
  • Knuckey R.M., Brown M.R., Robert R. & Frampton D.M.F., Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering, 2006, 35, 300–313. [Google Scholar]
  • Kroth P.G., Chiovitti A., Gruber A., Martin-Jezequel V., Mock T., Parker M.S., Stanley M.S., Kaplan A., Caron L., Weber T., Maheswari U., Armbrust E.V. & Bowler C., A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis. PLoS ONE, 2008, 3, 1, e1426. [Google Scholar]
  • Laws E.A., Taguchi S, Hirata J. & Pang L., Mass culture optimization studies with four marine microalgae. Biomass, 1988, 6, 19–32. [CrossRef] [Google Scholar]
  • Lee Y.K., Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology, 2001, 13, 307–315. [Google Scholar]
  • Metting F.B., Biodiversity et application of microalgae. Journal of Industrial Microbiology & Biotechnology, 1996, 17, 477–489. [Google Scholar]
  • Miao X. & Wu Q., High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 2004, 110, 85–93. [Google Scholar]
  • Miao X., Wu Q. & Yang C.Y., Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical et Applied Pyrolysis, 2004, 71, 855–863. [Google Scholar]
  • Moheimani N.R. & Borowitzka M.A., The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. Journal of Applied Phycology, 2006, 18, 703–712. [Google Scholar]
  • Molina Grima E., Fernandez E., Acien F.G. & Chisti Y., Tubular photobioreactor design for algal cultures, Journal of Biotechnology, 2001, 92, 113–131. [Google Scholar]
  • Molina Grima E.M., Perez J.A.S., Camacho F.G., Sevilla J.M.F. & Fernandez F.G.A., Effect of Growth-Rate on the Eicosapentaenoic Acid et Docosahexaenoic Acid Content of Isochrysis-Galbana in Chemostat Culture. Applied Microbiology et Biotechnology, 1994, 41, 23–27. [Google Scholar]
  • Molina Grima E.M., Belarbi E.H., Fernandez F.G.A., Medina A.R. & Chisti Y., Recovery of microalgal biomass et metabolites: process options et economics. Biotechnology Advances, 2003, 20, 491–515. [Google Scholar]
  • Moore A., Blooming prospects? EMBO reports, 2001, 2, 462-464. [Google Scholar]
  • Moreno J., Vargas M.A., Rodriguez H., Rivas J., Guerrero M.G., Outdoor cultivation of a nitrogen-fixing marine cyanobacterium Anabaena sp. ATCC 33047. Biomol. Eng., 2003, 20, 191–197. [Google Scholar]
  • Muchow R.C., Spillman M.F., Wood A.W. & Thomas M.R., Radiation interception et biomass accumulation in a sugarcane crop grown under irrigated tropical conditions. Australian Journal of Agricultural Research, 1994, 45, 37–49. [Google Scholar]
  • Olaizola M., Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering, 2003, 20, 459–466. [Google Scholar]
  • Poelman E., DePauw N. & Jeurissen B., Potential of electrolytic flocculation for recovery of micro-algae. Resources Conservation and Recycling, 1997, 19, 1–10. [Google Scholar]
  • Pulz O., Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 2001, 57, 287–293. [Google Scholar]
  • Pulz O. & Gross W., Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 2004, 65, 635–648. [Google Scholar]
  • Qi B., Fraser T., Mugford S., Dobson G., Sayanova O., Butler J., Napier J.A., Stobart A.K. & Lazarus C.M., Production of very long chain polyunsaturated omega-3 et omega-6 fatty acids in plants. Nature Biotechnology, 2004, 22, 739–745. [Google Scholar]
  • Radmer R.J., Algal diversity et commercial algal products. Bioscience, 1996, 46, 263–270. [Google Scholar]
  • Reith J.H., Steketee J., Brandeburg W. & Sijtsma L., Platform Groene Grondstoffen, 2006, Werkgroep 1: duurzame productie en ontwikkeling van biomassa. Deelpad: aquatische biomassa. [Google Scholar]
  • Richmond A., Lichtenberg E., Stahl B. & Vonshak A., Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. Appl. Phycol., 1990, 2, 195–206. [CrossRef] [Google Scholar]
  • Richmond A., Microalgal biotechnology at the turn of the millennium: A personal view. Journal of Applied Phycology, 2000, 12, 441–451. [Google Scholar]
  • Richmond A., Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia, 2004, 512, 33–37. [Google Scholar]
  • Rossignol N., Lebeau T., Jaouen P. & Robert J.M., Comparison of two membrane - photobioreactors, with free or immobilized cells, for the production of pigments by a marine diatom. Bioprocess Engineering, 2000, 23, 495–501. [Google Scholar]
  • Scragg A.H., Morrison J. & Shales S.W., The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technology, 2003, 33, 884–889. [Google Scholar]
  • Sheehan J., Dunahay T., Benemann J. & Roessler P., A look back at the U.S. Department of Energy's aquatic species program—biodiesel from algae. NREL/TP-580-24190. 1998, U.S. Department of Energy's Office of Fuels Development. [Google Scholar]
  • Spolaore P., Joannis-Cassan C., Duran E. & Isambert A., Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 2006, 101, 87–96. [Google Scholar]
  • Takagi M., Karseno Yoshida T., Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cell. J Biosci Bioeng., 2006, 101, 223–226. [Google Scholar]
  • Teyssèdre B., “Are the green algae (phylum Viridiplantae) two billion years old ?” Notebooks on Geology, 2006, A03, 1–15. [Google Scholar]
  • van Harmelen T. & Oonk H., Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. Apeldoorn, 2006, TNO Built Environment Geosciences [Google Scholar]
  • Xu H., Miao X.L. & Wu Q., High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 2006, 126, 499–507. [Google Scholar]
  • Zittelli G.C., Rodolfi L., Biondi N. & Tredici M.R., Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 2006, 261, 932–943. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.