Accès gratuit
Numéro
J. Soc. Biol.
Volume 203, Numéro 1, 2009
Neurocytologie moléculaire et neuroendocrinologie
Page(s) 29 - 38
DOI https://doi.org/10.1051/jbio:2009007
Publié en ligne 10 avril 2009
  • Adolf B., Chapouton P., Lam C.S., Topp S., Tannhauser B., Strahle U., Gotz M., Bally-Cuif L. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol, 2006, 295, 278–293. [CrossRef] [PubMed] [Google Scholar]
  • Anthony T.E., Mason H.A., Gridley T., Fishell G., Heintz N. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev, 2005, 19, 1028–1033. [CrossRef] [PubMed] [Google Scholar]
  • Azcoitia I., Sierra A., Veiga S., Garcia-Segura L.M. Aromatase expression by reactive astroglia is neuroprotective. Ann N Y Acad Sci, 2003, 1007, 298–305. [CrossRef] [PubMed] [Google Scholar]
  • Balthazart J., Ball G.F. New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci, 1998, 21, 243–249. [CrossRef] [PubMed] [Google Scholar]
  • Bentivoglio M., Mazzarello P. The history of radial glia. Brain Res Bull, 1999, 49, 305–315. [CrossRef] [PubMed] [Google Scholar]
  • Bulun S.E., Takayama K., Suzuki T., Sasano H., Yilmaz B., Sebastian S. Organization of the human aromatase p450 (CYP19) gene. Semin Reprod Med, 2004, 22, 5–9. [CrossRef] [PubMed] [Google Scholar]
  • Callard G.V., Petro Z., Ryan K.J. Phylogenetic distribution of aromatase and other androgen-converting enzymes in the central nervous system. Endocrinology, 1978, 103, 2283–2290. [CrossRef] [PubMed] [Google Scholar]
  • Chapouton P., Jagasia R., Bally-Cuif L. Adult neurogenesis in non-mammalian vertebrates. Bioessays, 2007, 29, 745–757. [CrossRef] [PubMed] [Google Scholar]
  • de Lacalle S. Estrogen effects on neuronal morphology. Endocrine, 2006, 29, 185–190. [CrossRef] [PubMed] [Google Scholar]
  • Ekstrom P., Johnsson C.M., Ohlin L.M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol, 2001, 436, 92–110. [CrossRef] [PubMed] [Google Scholar]
  • Farage M.A., Osborn T.W., MacLean A.B. Cognitive, sensory, and emotional changes associated with the menstrual cycle: a review. Arch Gynecol Obstet, 2008, 278, 299–307. [CrossRef] [PubMed] [Google Scholar]
  • Forlano P.M., Deitcher D.L., Myers D.A., Bass A.H. Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source. J Neurosci, 2001, 21, 8943–8955. [PubMed] [Google Scholar]
  • Galea L.A. Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Rev, 2008, 57, 332–341. [CrossRef] [PubMed] [Google Scholar]
  • Ganat Y., Soni S., Chacon M., Schwartz M.L., Vaccarino F.M. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience, 2002, 112, 977–991. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Ovejero D., Azcoitia I., Doncarlos L.L., Melcangi R.C., Garcia-Segura L.M. Glia-neuron crosstalk in the neuroprotective mechanisms of sex steroid hormones. Brain Res Brain Res Rev, 2005, 48, 273–286. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Segura L.M. Aromatase in the brain: not just for reproduction anymore. J Neuroendocrinol, 2008, 20, 705–712. [Google Scholar]
  • Gotz M., Huttner W.B. The cell biology of neurogenesis. Nat Rev Mol Cell Biol, 2005, 6, 777–788. [CrossRef] [PubMed] [Google Scholar]
  • Grandel H., Kaslin J., Ganz J., Wenzel I., Brand M. Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Dev Biol, 2006, 295, 263–277. [CrossRef] [PubMed] [Google Scholar]
  • Hojo Y., Murakami G., Mukai H., Higo S., Hatanaka Y., Ogiue-Ikeda M., Ishii H., Kimoto T., Kawato S. Estrogen synthesis in the brain–role in synaptic plasticity and memory. Mol Cell Endocrinol, 2008, 290, 31–43. [CrossRef] [PubMed] [Google Scholar]
  • Kallivretaki E., Eggen R.I., Neuhauss S.C., Kah O., Segner H. The zebrafish, brain-specific, aromatase cyp19a2 is neither expressed nor distributed in a sexually dimorphic manner during sexual differentiation. Dev Dyn, 2007, 236, 3155–3166. [CrossRef] [PubMed] [Google Scholar]
  • Kelly M.J., Ronnekleiv O.K. Membrane-initiated estrogen signaling in hypothalamic neurons. Mol Cell Endocrinol, 2008, 290, 14–23. [CrossRef] [PubMed] [Google Scholar]
  • Kirsche W. On postembryonic matrix zones in the brain of various vertebrates and their relationship to the study of the brain structure. Z Mikrosk Anat Forsch, 1967, 77, 313–406. [PubMed] [Google Scholar]
  • Kranz D., Richter W. Autoradiographic studies on the localization of the matrix zones of the diencephalon of young and adult Lebistes reticulatus (Teleostae). Z Mikrosk Anat Forsch, 1970a, 82, 42–66. [PubMed] [Google Scholar]
  • Kranz D., Richter W. Autoradiographic studies on the synthesis of DNA in the cerebellum and medulla oblongata of teleosts of various ages. Z Mikrosk Anat Forsch, 1970b, 82, 264–292. [PubMed] [Google Scholar]
  • Le Page Y., Menuet A., Kah O., Pakdel F. Characterization of a cis-acting element involved in cell-specific expression of the zebrafish brain aromatase gene. Mol Reprod Dev, 2008, 75, 1549–1557. [CrossRef] [PubMed] [Google Scholar]
  • Le Page Y., Scholze M., Kah O., Pakdel F. Assessment of xenoestrogens using three distinct estrogen receptors and the zebrafish brain aromatase gene in a highly responsive glial cell system. Environ Health Perspect, 2006, 114, 752–758. [CrossRef] [PubMed] [Google Scholar]
  • Lephart E.D. A review of brain aromatase cytochrome P450. Brain Res Brain Res Rev, 1996, 22, 1–26. [CrossRef] [PubMed] [Google Scholar]
  • Lindsey B.W., Tropepe V. A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol, 2006, 80, 281–307. [CrossRef] [PubMed] [Google Scholar]
  • Lledo P.M., Alonso M., Grubb M.S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci, 2006, 7, 179–193. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Luine V.N. Sex steroids and cognitive function. J Neuroendocrinol, 2008, 20, 866–872. [CrossRef] [PubMed] [Google Scholar]
  • Martinez-Cerdeno V., Noctor S.C., Kriegstein A.R. Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur J Neurosci, 2006, 24, 3475–3488. [CrossRef] [PubMed] [Google Scholar]
  • Menuet A., Anglade I., Le Guevel R., Pellegrini E., Pakdel F., Kah O. Distribution of aromatase mRNA and protein in the brain and pituitary of female rainbow trout: Comparison with estrogen receptor alpha. J Comp Neurol, 2003, 462, 180–193. [CrossRef] [PubMed] [Google Scholar]
  • Menuet A., Pellegrini E., Brion F., Gueguen M.M., Anglade I., Pakdel F., Kah O. Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. J Comp Neurol, 2005, 485, 304–320. [CrossRef] [PubMed] [Google Scholar]
  • Micevych P.E., Mermelstein P.G. Membrane estrogen receptors acting through metabotropic glutamate receptors: an emerging mechanism of estrogen action in brain. Mol Neurobiol, 2008, 38, 66–77. [CrossRef] [PubMed] [Google Scholar]
  • Mouriec K., Pellegrini E., Anglade I., Menuet A., Adrio F., Thieulant M.L., Pakdel F., Kah O. Synthesis of estrogens in progenitor cells of adult fish brain: evolutive novelty or exaggeration of a more general mechanism implicating estrogens in neurogenesis? Brain Res Bull, 2008, 75, 274–280. [Google Scholar]
  • Noctor S.C., Flint A.C., Weissman T.A., Wong W.S., Clinton B.K., Kriegstein A.R. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci, 2002, 22, 3161–3173. [PubMed] [Google Scholar]
  • Noctor S.C., Martinez-Cerdeno V., Ivic L., Kriegstein A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 2004, 7, 136–144. [CrossRef] [PubMed] [Google Scholar]
  • Pasmanik M., Callard G.V. Aromatase and 5 alpha-reductase in the teleost brain, spinal cord, and pituitary gland. Gen Comp Endocrinol, 1985, 60, 244–251. [CrossRef] [PubMed] [Google Scholar]
  • Pellegrini E., Menuet A., Lethimonier C., Adrio F., Gueguen M.M., Tascon C., Anglade I., Pakdel F., Kah O. Relationships between aromatase and estrogen receptors in the brain of teleost fish. Gen Comp Endocrinol, 2005, 142, 60–66. [CrossRef] [PubMed] [Google Scholar]
  • Pellegrini E., Mouriec K., Anglade I., Menuet A., Le Page Y., Gueguen M.M., Marmignon M.H., Brion F., Pakdel F., Kah O. Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol, 2007, 501, 150–167. [CrossRef] [PubMed] [Google Scholar]
  • Peterson R.S., Lee D.W., Fernando G., Schlinger B.A. Radial glia express aromatase in the injured zebra finch brain. J Comp Neurol, 2004, 475, 261–269. [CrossRef] [PubMed] [Google Scholar]
  • Raz L., Khan M.M., Mahesh V.B., Vadlamudi R.K., Brann D.W. Rapid estrogen signaling in the brain. Neurosignals, 2008, 16, 140–153. [CrossRef] [PubMed] [Google Scholar]
  • Safe S. Environmental estrogens: roles in male reproductive tract problems and in breast cancer. Rev Environ Health, 2002, 17, 253–262. [CrossRef] [PubMed] [Google Scholar]
  • Saravia F., Beauquis J., Pietranera L., De Nicola A.F. Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice. Psychoneuroendocrinology, 2007, 32, 480–492. [CrossRef] [PubMed] [Google Scholar]
  • Sharif A., Legendre P., Prevot V., Allet C., Romao L., Studler J.M., Chneiweiss H., Junier M.P. Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene, 2007, 26, 2695–2706. [CrossRef] [PubMed] [Google Scholar]
  • Siegel N., Hoegg S., Salzburger W., Braasch I., Meyer A. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications. BMC Genomics, 2007, 8, 312. [CrossRef] [PubMed] [Google Scholar]
  • Simpkins J.W., Singh M. More than a decade of estrogen neuroprotection. Alzheimers Dement, 2008, 4, S131–136. [CrossRef] [PubMed] [Google Scholar]
  • Spencer J.L., Waters E.M., Romeo R.D., Wood G.E., Milner T.A., McEwen B.S. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol, 2008, 29, 219–237. [CrossRef] [PubMed] [Google Scholar]
  • Suzuki S., Gerhold L.M., Bottner M., Rau S.W., Dela Cruz C., Yang E., Zhu H., Yu J., Cashion A.B., Kindy M.S., Merchenthaler I., Gage F.H., Wise P.M. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol, 2007, 500, 1064–1075. [CrossRef] [PubMed] [Google Scholar]
  • Tchoudakova A., Callard G.V. Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology, 1998, 139, 2179–2189. [CrossRef] [PubMed] [Google Scholar]
  • Tchoudakova A., Kishida M., Wood E., Callard G.V. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish. J Steroid Biochem Mol Biol, 2001, 78, 427–439. [CrossRef] [PubMed] [Google Scholar]
  • Tong S.K., Mouriec K., Kuo M.W., Pellegrini E., Gueguen M.M., Brion F., Kah O., Chung B.C., 2009. A cyp19a1b-GFP (Aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells. Genesis, in press. [Google Scholar]
  • Toran-Allerand C.D. Estrogen and the brain: beyond ER-alpha, ER-beta, and 17beta-estradiol. Ann N Y Acad Sci, 2005, 1052, 136–144. [CrossRef] [PubMed] [Google Scholar]
  • Vaccarino F.M., Fagel D.M., Ganat Y., Maragnoli M.E., Ment L.R., Ohkubo Y., Schwartz M.L., Silbereis J., Smith K.M. Astroglial cells in development, regeneration, and repair. Neuroscientist, 2007, 13, 173–185. [CrossRef] [PubMed] [Google Scholar]
  • Walf A.A., Frye C.A. Rapid and estrogen receptor beta mediated actions in the hippocampus mediate some functional effects of estrogen. Steroids, 2008, 73, 997–1007. [CrossRef] [PubMed] [Google Scholar]
  • Woolley C.S. Acute effects of estrogen on neuronal physiology. Annu Rev Pharmacol Toxicol, 2007, 47, 657–680. [CrossRef] [PubMed] [Google Scholar]
  • Yague J.G., Munoz A., de Monasterio-Schrader P., Defelipe J., Garcia-Segura L.M., Azcoitia I. Aromatase expression in the human temporal cortex. Neuroscience, 2006, 138, 389–401. [CrossRef] [PubMed] [Google Scholar]
  • Zhang R.L., Zhang Z.G., Chopp M. Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology, 2008, 55, 345–352. [CrossRef] [PubMed] [Google Scholar]
  • Zupanc G.K. Neurogenesis and neuronal regeneration in the adult fish brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2006, 192, 649–670. [CrossRef] [PubMed] [Google Scholar]
  • Zupanc G.K., Hinsch K., Gage F.H. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol, 2005, 488, 290–319. [CrossRef] [PubMed] [Google Scholar]
  • Zupanc G.K., Zupanc M.M. New neurons for the injured brain: mechanisms of neuronal regeneration in adult teleost fish. Regen Med, 2006, 1, 207–216. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.