Accès gratuit
J. Soc. Biol.
Volume 203, Numéro 2, 2009
Angiogenèse : de la biologie à la thérapeutique
Page(s) 181 - 192
Publié en ligne 16 juin 2009
  • Abdelrahim M., Baker C.H., Abbruzzese J.L., Safe S., Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst, 2006, 98, 855–868. [CrossRef] [PubMed] [Google Scholar]
  • Abdelrahim M., Smith R. 3rd, Burghardt R., Safe S., Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res, 2004, 64, 6740–6749. [CrossRef] [PubMed] [Google Scholar]
  • Abdulrauf S.I., Edvardsen K., Ho K.L., Yang X.Y., Rock J.P., Rosenblum M.L., Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J Neurosurg, 1998, 88, 513–520. [CrossRef] [PubMed] [Google Scholar]
  • Aguayo A., Kantarjian H., Manshouri T., Gidel C., Estey E., Thomas D., Koller C., Estrov Z., O'Brien S., Keating M., Freireich E., Albitar M., Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 2000, 96, 2240–2245. [PubMed] [Google Scholar]
  • Bates D.O., Cui T.G., Doughty J.M., Winkler M., Sugiono M., Shields J.D., Peat D., Gillatt D., Harper S.J., VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res, 2002, 62, 4123–4131. [PubMed] [Google Scholar]
  • Bergers G., Benjamin L.E., Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003, 3, 401–410. [CrossRef] [PubMed] [Google Scholar]
  • Berra E., Benizri E., Ginouves A., Volmat V., Roux D., Pouysségur J., HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. Embo J, 2003, 22, 4082–4090. [CrossRef] [PubMed] [Google Scholar]
  • Borgstrom P., Gold D.P., Hillan K.J., Ferrara N., Importance of VEGF for breast cancer angiogenesis in vivo: implications from intravital microscopy of combination treatments with an anti-VEGF neutralizing monoclonal antibody and doxorubicin. Anticancer Res, 1999, 19, 4203–4214. [PubMed] [Google Scholar]
  • Cao H., Deterding L.J., Venable J.D., Kennington E.A., Yates J.R., 3rd, Tomer K.B., Blackshear P.J., Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochem J, 2006, 394, 285–297. [CrossRef] [PubMed] [Google Scholar]
  • Ciais D., Cherradi N., Bailly S., Grenier E., Berra E., Pouysségur J., Lamarre J., Feige J.J., Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene, 2004, 23, 8673–8680. [CrossRef] [PubMed] [Google Scholar]
  • Denduluri N., Yang S.X., Berman A.W., Nguyen D., Liewehr D.J., Steinberg S.M., Swain S.M., Circulating biomarkers of bevacizumab activity in patients with breast cancer. Cancer Biol Ther, 2008, 7, 15–20. [CrossRef] [PubMed] [Google Scholar]
  • Doller A., Akool el S., Huwiler A., Muller R., Radeke H.H., Pfeilschifter J., Eberhardt W., Posttranslational modification of the AU-rich element binding protein HuR by protein kinase C delta elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol Cell Biol, 2008, 28, 2608–2625. [CrossRef] [PubMed] [Google Scholar]
  • Doller A., Huwiler A., Muller R., Radeke H.H., Pfeilschifter J., Eberhardt W., Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell, 2007, 18, 2137–2148. [CrossRef] [PubMed] [Google Scholar]
  • Dvorak H.F., Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol, 2002, 20, 4368–4380. [CrossRef] [PubMed] [Google Scholar]
  • Dvorak H.F., Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med, 1986, 315, 1650–1659. [CrossRef] [PubMed] [Google Scholar]
  • Ellis L.M., Hicklin D.J., VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer, 2008, 8, 579–591. [CrossRef] [PubMed] [Google Scholar]
  • Escudier B., Pluzanska A., Koralewski P., Ravaud A., Bracarda S., Szczylik C., Chevreau C., Filipek M., Melichar B., Bajetta E., Gorbunova V., Bay J.O., Bodrogi I., Jagiello-Gruszfeld A., Moore N., Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet, 2007, 370, 2103–2111. [CrossRef] [PubMed] [Google Scholar]
  • Essafi-Benkhadir K., Onesto C., Stebe E., Moroni C., Pagès G., Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell, 2007, 18, 4648–4658. [CrossRef] [PubMed] [Google Scholar]
  • Ferrara N., Kerbel R.S., Angiogenesis as a therapeutic target. Nature, 2005, 438, 967–974. [CrossRef] [PubMed] [Google Scholar]
  • Finkenzeller G., Marme D., Weich H.A., Hug H., Platelet-derived growth factor-induced transcription of the vascular endothelial growth factor gene is mediated by protein kinase C. Cancer Res, 1992, 52, 4821–4823. [PubMed] [Google Scholar]
  • Foekens J.A., Peters H.A., Grebenchtchikov N., Look M.P., Meijer-van Gelder M.E., Geurts-Moespot A., van der Kwast T.H., Sweep C.G., Klijn J.G., High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Res, 2001, 61, 5407–5414. [PubMed] [Google Scholar]
  • Fox W.D., Higgins B., Maiese K.M., Drobnjak M., Cordon-Cardo C., Scher H.I., Agus D.B., Antibody to vascular endothelial growth factor slows growth of an androgen-independent xenograft model of prostate cancer. Clin Cancer Res, 2002, 8, 3226–3231. [PubMed] [Google Scholar]
  • Gerber H.P., Ferrara N., Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res, 2005, 65, 671–680. [PubMed] [Google Scholar]
  • Gille J., Swerlick R.A., Caughman S.W., Transforming growth factor alpha induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2 dependent DNA binding and transactivation. EMBO J, 1997, 16, 750–759. [CrossRef] [PubMed] [Google Scholar]
  • Gridelli C., Maione P., Del Gaizo F., Colantuoni G., Guerriero C., Ferrara C., Nicolella D., Comunale D., De Vita A., Rossi A., Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist, 2007, 12, 191–200. [CrossRef] [PubMed] [Google Scholar]
  • Hanahan D., Folkman J., Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86, 353–364. [CrossRef] [PubMed] [Google Scholar]
  • Hurwitz H., Fehrenbacher L., Novotny W., Cartwright T., Hainsworth J., Heim W., Berlin J., Baron A., Griffing S., Holmgren E., Ferrara N., Fyfe G., Rogers B., Ross R., Kabbinavar F., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004, 350, 2335–2342. [CrossRef] [PubMed] [Google Scholar]
  • Ishigami S.I., Arii S., Furutani M., Niwano M., Harada T., Mizumoto M., Mori A., Onodera H., Imamura M., Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J Cancer, 1998, 78, 1379–1384. [CrossRef] [PubMed] [Google Scholar]
  • Izumi Y., Xu L., di Tomaso E., Fukumura D., Jain R.K., Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature, 2002, 416, 279–280. [CrossRef] [Google Scholar]
  • Jacobsen J., Rasmuson T., Grankvist K., Ljungberg B., Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol, 2000, 163, 343–347. [CrossRef] [PubMed] [Google Scholar]
  • Jain R.K., Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer, 2008, 8, 309–316. [CrossRef] [PubMed] [Google Scholar]
  • Katsanou V., Dimitriou M., Kontoyiannis D.L., Post-transcriptional regulators in inflammation: exploring new avenues in biological therapeutics. Ernst Schering Found Symp Proc, 2006, 37–57. [PubMed] [Google Scholar]
  • Kerbel R.S., Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000, 21, 505–515. [CrossRef] [PubMed] [Google Scholar]
  • Kindler H.L., Friberg G., Singh D.A., Locker G., Nattam S., Kozloff M., Taber D.A., Karrison T., Dachman A., Stadler W.M., Vokes E.E., Phasetrial II of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol, 2005, 23, 8033–8040. [CrossRef] [PubMed] [Google Scholar]
  • Klagsbrun M., Eichmann A., A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev, 2005, 16, 535–548. [CrossRef] [PubMed] [Google Scholar]
  • Laughner E., Taghavi P., Chiles K., Mahon P.C., Semenza G.L., HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol, 2001, 21, 3995–4004. [CrossRef] [PubMed] [Google Scholar]
  • Legros L., Bourcier C., Jacquel A., Mahon F.X., Cassuto J.P., Auberger P., Pagès G., Imatinib mesylate (STI571) decreases the vascular endothelial growth factor plasma concentration in patients with chronic myeloid leukemia. Blood, 2004, 104, 495–501. [CrossRef] [PubMed] [Google Scholar]
  • Lévy N.S., Chung S., Furneaux H., Lévy A.P., Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem, 1998, 273, 6417–6423. [CrossRef] [PubMed] [Google Scholar]
  • Lopez de Silanes I., Fan J., Yang X., Zonderman A.B., Potapova O., Pizer E.S., Gorospe M., Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene, 2003, 22, 7146–7154. [CrossRef] [PubMed] [Google Scholar]
  • Lu M., Amano S., Miyamoto K., Garland R., Keough K., Qin W., Adamis A.P., Insulin-induced vascular endothelial growth factor expression in retina. Invest Ophthalmol Vis Sci, 1999, 40, 3281–3286. [PubMed] [Google Scholar]
  • Marchetti S., Gimond C., Roux D., Gothie E., Pouysségur J., Pagès G., Inducible expression of a MAP kinase phosphatase-3-GFP chimera specifically blunts fibroblast growth and ras-dependent tumor formation in nude mice. J Cell Physiol, 2004, 199, 441–450. [CrossRef] [PubMed] [Google Scholar]
  • Marderosian M., Sharma A., Funk A.P., Vartanian R., Masri J., Jo O.D., Gera J.F., Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene, 2006, 25, 6277–6290. [CrossRef] [PubMed] [Google Scholar]
  • Mendel D.B., Laird A.D., Xin X., Louie S.G., Christensen J.G., Li G., Schreck R.E., Abrams T.J., Ngai T.J., Lee L.B., Murray L.J., Carver J., Chan E., Moss K.G., Haznedar J.O., Sukbuntherng J., Blake R.A., Sun L., Tang C., Miller T., Shirazian S., McMahon G., Cherrington J.M., In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res, 2003, 9, 327–337. [PubMed] [Google Scholar]
  • Milanini J., Vinals F., Pouysségur J., Pagès G., p42/p44 MAP Kinase module plays a key role in the transcriptional regulation of vascular endothelial growth factor gene in fibroblasts. J Biol Chem, 1998, 273, 18165–18172. [CrossRef] [PubMed] [Google Scholar]
  • Milanini-Mongiat J., Pouysségur J., Pagès G., Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem, 2002, 277, 20631–20639. [CrossRef] [PubMed] [Google Scholar]
  • Miquerol L., Langille B.L., Nagy A., Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development, 2000, 127, 3941–3946. [PubMed] [Google Scholar]
  • Mylonis I., Chachami G., Samiotaki M., Panayotou G., Paraskeva E., Kalousi A., Georgatsou E., Bonanou S., Simos G., Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem, 2006, 281, 33095–33106. [CrossRef] [PubMed] [Google Scholar]
  • Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z., Vascular Endothelial Growth Factor (VEGF) and its receptors. FASEB J, 1999, 13, 9–22. [PubMed] [Google Scholar]
  • O'Farrell A.M., Abrams T.J., Yuen H.A., Ngai T.J., Louie S.G., Yee K.W., Wong L.M., Hong W., Lee L.B., Town A., Smolich B.D., Manning W.C., Murray L.J., Heinrich M.C., Cherrington J.M., SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood, 2003, 101, 3597–3605. [CrossRef] [PubMed] [Google Scholar]
  • Onesto C., Hannoun-Lévi J.M., Chamorey E., Formento J.L., Ramaioli A., Pagès G., Vascular endothelial growth factor-A and Poly(A) binding protein-interacting protein 2 expression in human head and neck carcinomas: correlation and prognostic significance. Br J Cancer, 2006, 94, 1516–1523. [CrossRef] [PubMed] [Google Scholar]
  • Onesto C., Berra E., Grépin R., Pagès G., Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J Biol Chem, 2004, 279, 34217–34226. [CrossRef] [PubMed] [Google Scholar]
  • Pagès G., Sp3-Mediated VEGF regulation is dependent on phosphorylation by extra-cellular signals regulated kinases (Erk). J Cell Physiol, 2007, 213, 454–463. [CrossRef] [PubMed] [Google Scholar]
  • Pelletier F., Bermont L., Puzenat E., Blanc D., Cairey-Remonnay S., Mougin C., Laurent R., Humbert P., Aubin F., Circulating vascular endothelial growth factor in cutaneous malignant melanoma. Br J Dermatol, 2005, 152, 685–689. [CrossRef] [PubMed] [Google Scholar]
  • Perrin R.M., Konopatskaya O., Qiu Y., Harper S., Bates D.O., Churchill A.J., Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia, 2005, 48, 2422–2427. [CrossRef] [PubMed] [Google Scholar]
  • Pivot X., Bevacizumab in first-line treatment of metastatic breast cancer: a viewpoint by Xavier Pivot. Drugs, 2007, 67, 1800–1801. [CrossRef] [PubMed] [Google Scholar]
  • Pore N., Liu S., Shu H.K., Li B., Haas-Kogan D., Stokoe D., Milanini-Mongiat J., Pagès G., O'Rourke D.M., Bernhard E., Maity A., Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell, 2004, 15, 4841–4853. [CrossRef] [PubMed] [Google Scholar]
  • Press M.F., Lenz H.J., EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs, 2007, 67, 2045–2075. [CrossRef] [PubMed] [Google Scholar]
  • Presta L.G., Chen H., O'Connor S.J., Chisholm V., Meng Y.G., Krummen L., Winkler M., Ferrara N., Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res, 1997, 57, 4593–4599. [PubMed] [Google Scholar]
  • Rak J., Mitsuhashi Y., Sheehan C., Tamir A., Vioria-Petit A., Filmus J., Mansour S.J., Ahn N.G., Kerbel R.S., Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras transformed epithelial cells and fibroblasts. Cancer Res., 2000, 60, 490–498. [PubMed] [Google Scholar]
  • Ramaswamy B., Elias A.D., Kelbick N.T., Dodley A., Morrow M., Hauger M., Allen J., Rhoades C., Kendra K., Chen H.X., Eckhardt S.G., Shapiro C.L., Phase II trial of bevacizumab in combination with weekly docetaxel in metastatic breast cancer patients. Clin Cancer Res, 2006, 12, 3124–3129. [CrossRef] [PubMed] [Google Scholar]
  • Richard D.E., Berra E., Gothie E., Roux D., Pouysségur J., p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem, 1999, 274, 32631–32637. [CrossRef] [PubMed] [Google Scholar]
  • Rini B.I., Michaelson M.D., Rosenberg J.E., Bukowski R.M., Sosman J.A., Stadler W.M., Hutson T.E., Margolin K., Harmon C.S., DePrimo S.E., Kim S.T., Chen I., George D.J., Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J Clin Oncol, 2008, 26, 3743–3748. [CrossRef] [PubMed] [Google Scholar]
  • Sandler A., Gray R., Perry M.C., Brahmer J., Schiller J.H., Dowlati A., Lilenbaum R., Johnson D.H., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006, 355, 2542–2550. [CrossRef] [PubMed] [Google Scholar]
  • Seo Y., Baba H., Fukuda T., Takashima M., Sugimachi K., High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer, 2000, 88, 2239–2245. [CrossRef] [PubMed] [Google Scholar]
  • Shih S.C., Claffey K.P., Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem, 1999, 274, 1359–1365. [CrossRef] [PubMed] [Google Scholar]
  • Stoecklin G., Gross B., Ming X.F., Moroni C., A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene, 2003, 22, 3554–3561. [CrossRef] [PubMed] [Google Scholar]
  • Strowski M.Z., Cramer T., Schafer G., Juttner S., Walduck A., Schipani E., Kemmner W., Wessler S., Wunder C., Weber M., Meyer T.F., Wiedenmann B., Jons T., Naumann M., Hocker M., Helicobacter pylori stimulates host vascular endothelial growth factor-A (vegf-A) gene expression via MEK/ERK-dependent activation of Sp1 and Sp3. Faseb J, 2004, 18, 218–220. [PubMed] [Google Scholar]
  • Toi M., Matsumoto T., Bando H., Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol, 2001, 2, 667–673. [CrossRef] [PubMed] [Google Scholar]
  • Varey A.H., Rennel E.S., Qiu Y., Bevan H.S., Perrin R.M., Raffy S., Dixon A.R., Paraskeva C., Zaccheo O., Hassan A.B., Harper S.J., Bates D.O., VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer, 2008, 98, 1366–1379. [CrossRef] [PubMed] [Google Scholar]
  • Warren R.S., Yuan H., Matli M.R., Ferrara N., Donner D.B., Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem, 1996, 271, 29483–29488. [CrossRef] [PubMed] [Google Scholar]
  • Wilhelm S., Chien D.S., BAY 43-9006: preclinical data. Curr Pharm Des, 2002, 8, 2255–2257. [CrossRef] [PubMed] [Google Scholar]
  • Woolard J., Wang W.Y., Bevan H.S., Qiu Y., Morbidelli L., Pritchard-Jones R.O., Cui T.G., Sugiono M., Waine E., Perrin R., Foster R., Digby-Bell J., Shields J.D., Whittles C.E., Mushens R.E., Gillatt D.A., Ziche M., Harper S.J., Bates D.O., VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res, 2004, 64, 7822–7835. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto S., Konishi I., Mandai M., Kuroda H., Komatsu T., Nanbu K., Sakahara H., Mori T., Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer, 1997, 76, 1221–1227. [CrossRef] [PubMed] [Google Scholar]
  • Yang J.C., Haworth L., Sherry R.M., Hwu P., Schwartzentruber D.J., Topalian S.L., Steinberg S.M., Chen H.X., Rosenberg S.A., A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med, 2003, 349, 427–434. [CrossRef] [PubMed] [Google Scholar]
  • Yen L., Benlimame N., Nie Z.R., Xiao D., Wang T., Al Moustafa A.E., Esumi H., Milanini J., Hynes N.E., Pagès G., Alaoui-Jamali M.A., Differential regulation of tumor angiogenesis by distinct ErbB homo- and heterodimers. Mol Biol Cell, 2002, 13, 4029–4044. [CrossRef] [PubMed] [Google Scholar]
  • Yuan A., Yu C.J., Shun C.T., Luh K.T., Kuo S.H., Lee Y.C., Yang P.C., Total cyclooxygenase-2 mRNA levels correlate with vascular endothelial growth factor mRNA levels, tumor angiogenesis and prognosis in non-small cell lung cancer patients. Int J Cancer, 2005, 115, 545–555. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y.W., Su Y., Volpert O.V., Van de Woude G.F., Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A, 2003a, 100, 12718–12723. [CrossRef] [PubMed] [Google Scholar]
  • Zhang L., Yang N., Katsaros D., Huang W., Park J.W., Fracchioli S., Vezzani C., Rigault de la Longrais, I.A., Yao W., Rubin S.C., Coukos G., The oncogene phosphatidylinositol 3'-kinase catalytic subunit alpha promotes angiogenesis via vascular endothelial growth factor in ovarian carcinoma. Cancer Res, 2003b, 63, 4225–4231. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.