Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 204, Numéro 4, 2010
Page(s) 311 - 319
Section Les chimiokines : de nouveaux messagers communs entre système nerveux et système immunitaire
DOI https://doi.org/10.1051/jbio/2010024
Publié en ligne 10 janvier 2011
  • Ambati J., Ambati B.K., Yoo S.H., Ianchulev S., Adamis A.P., Age-related macular degeneration : etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol, 2003a, 48, 257–293. [CrossRef] [PubMed] [Google Scholar]
  • Ambati J., Anand A., Fernandez S., Sakurai E., Lynn B.C., Kuziel W.A., Rollins B.J., Ambati B.K., An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med, 2003b, 9, 1390–1397. [CrossRef] [PubMed] [Google Scholar]
  • Bellander B.M., Bendel O., Von Euler G., Ohlsson M., Svensson M., Activation of microglial cells and complement following traumatic injury in rat entorhinal-hippocampal slice cultures. J Neurotrauma, 2004, 21, 605–615. [CrossRef] [PubMed] [Google Scholar]
  • Chan C.C., Ross R.J., Shen D., Ding X., Majumdar Z., Bojanowski C.M., Zhou M., Salem N., Jr., Bonner R., Tuo J., Ccl2/Cx3cr1-deficient mice : an animal model for age-related macular degeneration. Ophthalmic Res, 2008, 40, 124–128. [CrossRef] [PubMed] [Google Scholar]
  • Charo I.F., Myers S.J., Herman A., Franci C., Connolly A.J., Coughlin S.R., Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci USA, 1994, 91, 2752–2756. [CrossRef] [Google Scholar]
  • Checchin D., Sennlaub F., Levavasseur E., Leduc M., Chemtob S., Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci, 2006, 47, 3595–3602. [CrossRef] [PubMed] [Google Scholar]
  • Chen H., Liu B., Lukas T.J., Neufeld A.H., The aged retinal pigment epithelium/choroid : a potential substratum for the pathogenesis of age-related macular degeneration. PLoS One, 2008, 3, e2339. [Google Scholar]
  • Cohen S.Y., Dubois L., Tadayoni R., Delahaye-Mazza C., Debibie C., Quentel G., Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation. Br J Ophthalmol, 2007, 91, 354–359. [CrossRef] [PubMed] [Google Scholar]
  • Combadière C., Feumi C., Raoul W., Keller N., Rodero M., Pezard A., Lavalette S., Houssier M., Jonet L., Picard E., CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest, 2007, 117, 2920–2928. [CrossRef] [PubMed] [Google Scholar]
  • Combadière C., Potteaux S., Gao J.L., Esposito B., Casanova S., Lee E.J., Debré P., Tedgui A., Murphy P.M., Mallat Z., Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation, 2003, 107, 1009–1016. [CrossRef] [PubMed] [Google Scholar]
  • Combadière C., Potteaux S., Rodero M., Simon T., Pezard A., Esposito B., Merval R., Proudfoot A., Tedgui A., Mallat Z., Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation, 2008, 117, 1649–1657. [CrossRef] [PubMed] [Google Scholar]
  • Daoudi M., Lavergne E., Garin A., Tarantino N., Debré P., Pincet F., Combadière C., Deterre P., Enhanced adhesive capacities of the naturally occurring Ile249-Met280 variant of the chemokine receptor CX3CR1. J Biol Chem, 2004, 279, 19649–19657. [CrossRef] [PubMed] [Google Scholar]
  • Edwards A.O., Ritter R., 3rd, Abel K.J., Manning A., Panhuysen C., Farrer, L.A., Complement factor H polymorphism and age-related macular degeneration. Science, 2005, 308, 421–424. [CrossRef] [PubMed] [Google Scholar]
  • Eltayeb S., Berg A.L., Lassmann H., Wallstrom E., Nilsson M., Olsson T., Ericsson-Dahlstrand A., Sunnemark D., Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system : insight into mechanisms of MOG-induced EAE. J Neuroinflammation, 2007, 4, 14. [CrossRef] [PubMed] [Google Scholar]
  • Espinosa-Heidmann, D.G.,Suner I.J., Hernandez E.P., Monroy D., Csaky K.G., Cousins S.W., Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci, 2003, 44, 3586–3592. [CrossRef] [PubMed] [Google Scholar]
  • Farkas T.G., Sylvester V., Archer D., The ultrastructure of drusen. Am J Ophthalmol, 1971, 71, 1196–1205. [PubMed] [Google Scholar]
  • Geissmann F., Jung, S., Littman D.R., Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 2003, 19, 71–82. [CrossRef] [PubMed] [Google Scholar]
  • Gold B., Merriam J.E., Zernant J., Hancox L.S., Taiber A.J., Gehrs K., Cramer K., Neel J., Bergeron J., Barile G.R., Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet, 2006, 38, 458–462. [CrossRef] [PubMed] [Google Scholar]
  • Gupta N., Brown K.E., Milam A.H., Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res, 2003, 76, 463–471. [CrossRef] [PubMed] [Google Scholar]
  • Hageman G.S., Luthert P.J., Victor Chong N.H., Johnson L.V., Anderson D.H., Mullins R.F., An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res, 2001, 20, 705–732. [CrossRef] [PubMed] [Google Scholar]
  • Haines J.L., Hauser M.A., Schmidt S., Scott W.K., Olson L.M., Gallins P., Spencer K.L., Kwan S.Y., Noureddine M., Gilbert J.R., Complement factor H variant increases the risk of age-related macular degeneration. Science, 2005, 308, 419–421. [CrossRef] [PubMed] [Google Scholar]
  • Hakobyan S., Harris C.L., van den Berg C.W., Fernandez-Alonso M.C., de Jorge E.G., de Cordoba S.R., Rivas G., Mangione P., Pepys M.B., Morgan B.P. Complement factor H binds to denatured rather than to native pentameric C-reactive protein. J Biol Chem, 2008, 283, 30451–30460. [CrossRef] [PubMed] [Google Scholar]
  • Higgins G.T., Wang J.H., Dockery P., Cleary P.E., Redmond H.P., Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized photoreceptor outer segments. Invest Ophthalmol Vis Sci, 2003, 44, 1775–1782. [CrossRef] [PubMed] [Google Scholar]
  • Ishibashi T., Hata Y., Yoshikawa H., Nakagawa K., Sueishi K., Inomata H., Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol, 1997, 235, 159–167. [CrossRef] [PubMed] [Google Scholar]
  • Johnson L.V., Leitner W.P., Staples M.K., Anderson D.H., Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res, 2001, 73, 887–896. [CrossRef] [PubMed] [Google Scholar]
  • Joly S., Francke M., Ulbricht E., Beck S., Seeliger M., Hirrlinger P., Hirrlinger J., Lang K.S., Zinkernagel M., Odermatt B., Cooperative phagocytes : resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol, 2009, 174, 2310–2323. [CrossRef] [PubMed] [Google Scholar]
  • Klein R., Peto T., Bird A., Vannewkirk M.R., The epidemiology of age-related macular degeneration. Am J Ophthalmol, 2004, 137, 486–495. [CrossRef] [PubMed] [Google Scholar]
  • Klein R.J., Zeiss C., Chew E.Y., Tsai J.Y., Sackler R.S., Haynes C., Henning A.K., SanGiovanni J.P., Mane S.M., Mayne S.T., Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308, 385–389. [CrossRef] [PubMed] [Google Scholar]
  • Liang K.J., Lee J.E., Wang Y.D., Ma W., Fontainhas A.M., Fariss R.N., Wong W.T., Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci, 2009, 50, 4444–4451. [CrossRef] [PubMed] [Google Scholar]
  • Luhmann U.F., Robbie S., Munro P.M., Barker S.E., Duran Y., Luong V., Fitzke F.W., Bainbridge J., Ali R.R., Maclaren R., The drusen-like phenotype in aging Ccl2 knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci, 2009a, [Google Scholar]
  • Luhmann U.F., Robbie S., Munro P.M., Barker S.E., Duran Y., Luong V., Fitzke F.W., Bainbridge J.W., Ali R.R., MacLaren R.E., The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci, 2009b, 50, 5934–5943. [CrossRef] [PubMed] [Google Scholar]
  • Luibl V., Isas J.M., Kayed R., Glabe C.G., Langen R., Chen J., Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest, 2006, 116, 378–385. [CrossRef] [PubMed] [Google Scholar]
  • Ma, W., Zhao, L., Fontainhas, A.M., Fariss, R.N., Wong, W.T., Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells : a potential cellular interaction relevant to AMD. PLoS One, 2009, 4, e7945. [Google Scholar]
  • Matsubara T., Pararajasegaram G., Wu G.S., Rao N.A., Retinal microglia differentially express phenotypic markers of antigen-presenting cells in vitro. Invest Ophthalmol Vis Sci, 1999, 40, 3186–3193. [PubMed] [Google Scholar]
  • Mullins R.F., Russell S.R., Anderson D.H., Hageman G.S., Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J, 2000, 14, 835–846. [PubMed] [Google Scholar]
  • Nakazawa T., Hisatomi T., Nakazawa C., Noda K., Maruyama K., She H., Matsubara A., Miyahara S., Nakao S., Yin Y., Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci USA, 2007, 104, 2425–2430. [CrossRef] [Google Scholar]
  • Ng T.F., Streilein J.W., Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci, 2001, 42, 3301-3310. [PubMed] [Google Scholar]
  • Nozaki M., Raisler B.J., Sakurai E., Sarma J.V., Barnum S.R., Lambris J.D., Chen Y., Zhang K., Ambati B.K., Baffi J.Z., Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA, 2006, 103, 2328–2333. [CrossRef] [Google Scholar]
  • Ormsby R.J., Ranganathan S., Tong J.C., Griggs K.M., Dimasi D.P., Hewitt A.W., Burdon K.P., Craig J.E., Hoh J., Gordon D.L., Functional and structural implications of the complement factor H Y402H polymorphism associated with age-related macular degeneration. Invest Ophthalmol Vis Sci, 2008, 49, 1763–1770. [CrossRef] [PubMed] [Google Scholar]
  • Penfold P.L., Liew S.C., Madigan M.C., Provis J.M., Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci, 1997, 38, 2125-2133. [PubMed] [Google Scholar]
  • Ransohoff R.M., Chemokines and chemokine receptors : standing at the crossroads of immunobiology and neurobiology. Immunity, 2009, 31, 711–721. [CrossRef] [PubMed] [Google Scholar]
  • Raoul W., Feumi C., Keller N., Lavalette S., Houssier M., Behar-Cohen F., Combadière C., Sennlaub F., Lipid-bloated subretinal microglial cells are at the origin of drusen appearance in CX3CR1-deficient mice. Ophthalmic Res, 2008a, 40, 115–119. [CrossRef] [PubMed] [Google Scholar]
  • Raoul W., Keller N., Rodero M., Behar-Cohen F., Sennlaub F., Combadière C., Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells. J Neuroimmunol, 2008b, 198, 56–61. [CrossRef] [PubMed] [Google Scholar]
  • Roque R.S., Rosales A.A., Jingjing L., Agarwal N., Al-Ubaidi M.R., Retina-derived microglial cells induce photoreceptor cell death in vitro. Brain Res, 1999, 836, 110–119. [CrossRef] [PubMed] [Google Scholar]
  • Rudolf M., Malek G., Messinger J.D., Clark M.E., Wang L., Curcio C.A., Sub-retinal drusenoid deposits in human retina : organization and composition. Exp Eye Res, 2008, 87, 402–408. [CrossRef] [PubMed] [Google Scholar]
  • Sakurai E., Anand A., Ambati B.K., van Rooijen N., Ambati J., Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci, 2003, 44, 3578–3585. [CrossRef] [PubMed] [Google Scholar]
  • Sarks S.H., Ageing and degeneration in the macular region : a clinico-pathological study. Br J Ophthalmol, 1976, 60, 324–341. [CrossRef] [PubMed] [Google Scholar]
  • Silverman M.D., Zamora D.O., Pan Y., Texeira P.V., Baek, S.H., Planck S.R., Rosenbaum J.T., Constitutive and inflammatory mediator-regulated fractalkine expression in human ocular tissues and cultured cells. Invest Ophthalmol Vis Sci, 2003, 44, 1608–1615. [CrossRef] [PubMed] [Google Scholar]
  • Tsutsumi C., Sonoda K.H., Egashira K., Qiao H., Hisatomi T., Nakao S., Ishibashi M., Charo I.F., Sakamoto T., Murata T., The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol, 2003, 74, 25–32. [CrossRef] [PubMed] [Google Scholar]
  • Tuo J., Bojanowski C.M., Zhou M., Shen D., Ross R.J., Rosenberg K.I., Cameron D.J., Yin C., Kowalak J.A., Zhuang Z., Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci, 2007, 48, 3827–3836. [CrossRef] [PubMed] [Google Scholar]
  • Tuo J., Smith B.C., Bojanowski C.M., Meleth A.D., Gery I., Csaky K.G., Chew E.Y., Chan C.C., The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J, 2004, 18, 1297–1299. [PubMed] [Google Scholar]
  • van der Schaft T.L., Mooy C.M., de Bruijn W.C., de Jong P.T., Early stages of age-related macular degeneration : an immunofluorescence and electron microscopy study. Br J Ophthalmol, 1993, 77, 657–661. [CrossRef] [PubMed] [Google Scholar]
  • Xu H., Chen M., Forrester J.V., Para-inflammation in the aging retina. Prog Retin Eye Res, 2009, 28, 348–368. [CrossRef] [PubMed] [Google Scholar]
  • Xu H., Chen M., Manivannan A., Lois N., Forrester J.V., Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell, 2008, 7, 58–68. [CrossRef] [PubMed] [Google Scholar]
  • Xu Q., Bernardo A., Walker D., Kanegawa T., Mahley R.W., Huang Y., Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci, 2006, 26, 4985–4994. [CrossRef] [PubMed] [Google Scholar]
  • Yang X., Hu J., Zhang J., Guan H., Polymorphisms in CFH, HTRA1 and CX3CR1 confer risk to exudative age-related macular degeneration in Han Chinese. Br J Ophthalmol, 2010, 94, 1211–1214. [CrossRef] [PubMed] [Google Scholar]
  • Yates J.R., Sepp T., Matharu B.K., Khan J.C., Thurlby D.A., Shahid H., Clayton D.G., Hayward C., Morgan J., Wright A.F., Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med, 2007, 357, 553–561. [CrossRef] [PubMed] [Google Scholar]
  • Yi X., Ogata N., Komada M., Yamamoto C., Takahashi K., Omori K., Uyama M., Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol, 1997, 235, 313–319. [CrossRef] [PubMed] [Google Scholar]
  • Zweifel S.A., Imamura, Y., Spaide T.C., Fujiwara T., Spaide R.F., Prevalence and Significance of Subretinal Drusenoid Deposits (Reticular Pseudodrusen) in Age-Related Macular Degeneration. Ophthalmology, 2010, 117, 1775–1781. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.