Accès gratuit
Biologie Aujourd'hui
Volume 204, Numéro 4, 2010
Page(s) 285 - 293
Section Les chimiokines : de nouveaux messagers communs entre système nerveux et système immunitaire
Publié en ligne 10 janvier 2011
  • Aiello R.J., Bourassa P.A., Lindsey S., Weng W., Natoli E., Rollins B.J., Milos P.M., Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 1999, 19, 1518–1525. [PubMed] [Google Scholar]
  • Aiello R.J., Perry B.D., Bourassa P.A., Robertson A., Weng W., Knight D.R., Smith A.H., Frederick K.S., Kalgutkar A., Gladue R.P., CCR2 receptor blockade alters blood monocyte subpopulations but does not affect atherosclerotic lesions in apoE(–/–) mice. Atherosclerosis, 2010, 208, 370–375. [CrossRef] [PubMed] [Google Scholar]
  • Aslanian A.M., Charo I.F., Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation, 2006, 114, 583–590. [CrossRef] [PubMed] [Google Scholar]
  • Auffray C., Fogg D., Garfa M., Elain G., Join-Lambert O., Kayal S., Sarnacki S., Cumano A., Lauvau G., Geissmann F., Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 2007, 317, 666–670. [CrossRef] [PubMed] [Google Scholar]
  • Belge K.U., Dayyani F., Horelt A., Siedlar M., Frankenberger M., Frankenberger B., Espevik T., Ziegler-Heitbrock L., The proinflammatory CD14+ CD16+DR++ monocytes are a major source of TNF. J Immunol, 2002, 168, 3536–3542. [PubMed] [Google Scholar]
  • Boger C.A., Fischereder M., Deinzer M., Aslanidis C., Schmitz G., Stubanus M., Banas B., Kruger B., Riegger G.A., Kramer B.K., RANTES gene polymorphisms predict all-cause and cardiac mortality in type 2 diabetes mellitus hemodialysis patients. Atherosclerosis, 2005, 183, 121–129. [CrossRef] [PubMed] [Google Scholar]
  • Boisvert W.A., Rose D.M., Johnson K.A., Fuentes M.E., Lira S.A., Curtiss L.K., Terkeltaub R.A., Up-regulated expression of the CXCR2 ligand KC/GRO-alpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression. Am J Pathol, 2006, 168, 1385–1395. [CrossRef] [PubMed] [Google Scholar]
  • Boisvert W.A., Santiago R., Curtiss L.K., Terkeltaub R.A., A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest, 1998, 101, 353–363. [CrossRef] [PubMed] [Google Scholar]
  • Boring L., Gosling J., Cleary M., Charo I.F., Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature, 1998, 394, 894–897. [CrossRef] [PubMed] [Google Scholar]
  • Breland U.M., Michelsen A.E., Skjelland M., Folkersen L., Krohg-Sorensen K., Russell D., Ueland T., Yndestad A., Paulsson-Berne G., Damas J.K., Oie E., Hansson G.K., Halvorsen B., Aukrust P., Raised MCP-4 levels in symptomatic carotid atherosclerosis : an inflammatory link between platelet and monocyte activation. Cardiovasc Res, 2010, 86, 265–273. [CrossRef] [PubMed] [Google Scholar]
  • Chapman C.M., Beilby J.P., McQuillan B.M., Thompson P.L., Hung J., Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke, 2004, 35, 1619–1624. [CrossRef] [PubMed] [Google Scholar]
  • Charo I.F., Taubman M.B., Chemokines in the pathogenesis of vascular disease. Circ Res, 2004, 95, 858–866. [CrossRef] [PubMed] [Google Scholar]
  • Combadière C., Potteaux S., Gao J.L., Esposito B., Casanova S., Lee E.J., Debré P., Tedgui A., Murphy P.M., Mallat Z., Decreased Atherosclerotic Lesion Formation in CX3CR1/Apolipoprotein E Double Knockout Mice. Circulation, 2003, 107, 1009–1016. [CrossRef] [PubMed] [Google Scholar]
  • Combadière C., Potteaux S., Rodero M., Simon T., Pezard A., Esposito B., Merval R., Proudfoot A., Tedgui A., Mallat Z., Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation, 2008, 117, 1649–1657. [CrossRef] [PubMed] [Google Scholar]
  • Galkina E., Harry B.L., Ludwig A., Liehn E.A., Sanders J.M., Bruce A., Weber C., Ley K., CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall. Circulation, 2007, 116, 1801–1811. [CrossRef] [PubMed] [Google Scholar]
  • Geissmann F., Jung S., Littman D.R., Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 2003, 19, 71–82. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez P., Alvarez R., Batalla A., Reguero J.R., Alvarez V., Astudillo A., Cubero G.I., Cortina A., Coto E., Genetic variation at the chemokine receptors CCR5/CCR2 in myocardial infarction. Genes Immun, 2001, 2, 191–195. [CrossRef] [PubMed] [Google Scholar]
  • Gordon S., Taylor P.R., Monocyte and macrophage heterogeneity. Nat Rev Immunol, 2005, 5, 953–964. [CrossRef] [PubMed] [Google Scholar]
  • Greaves D.R., Hakkinen T., Lucas A.D., Liddiard K., Jones E., Quinn C.M., Senaratne J., Green F.R., Tyson K., Boyle J., Shanahan C., Weissberg P.L., Gordon S., Yla-Hertualla S., Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus- and activation-regulated chemokine, are expressed in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol, 2001, 21, 923–929. [PubMed] [Google Scholar]
  • Grone H.J., Weber C., Weber K.S., Grone E.F., Rabelink T., Klier C.M., Wells T.N., Proudfood A.E., Schlondorff D., Nelson P.J., Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection : blocking monocyte arrest and recruitment. FASEB J, 1999, 13, 1371–1383. [PubMed] [Google Scholar]
  • Gu L., Okada Y., Clinton S.K., Gerard C., Sukhova G.K., Libby P., Rollins B.J., Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell, 1998, 2, 275–281. [CrossRef] [PubMed] [Google Scholar]
  • Guo J., de Waard V., Van Eck M., Hildebrand R.B., van Wanrooij E.J., Kuiper J., Maeda N., Benson G.M., Groot P.H., Van Berkel T.J., Repopulation of apolipoprotein E knockout mice with CCR2-deficient bone marrow progenitor cells does not inhibit ongoing atherosclerotic lesion development. Arterioscler Thromb Vasc Biol, 2005, 25, 1014–1019. [CrossRef] [PubMed] [Google Scholar]
  • Guo J., Van Eck M., Twisk J., Maeda N., Benson G.M., Groot P.H., Van Berkel T.J., Transplantation of monocyte CC-chemokine receptor 2-deficient bone marrow into ApoE3-Leiden mice inhibits atherogenesis. Arterioscler Thromb Vasc Biol, 2003, 23, 447–453. [CrossRef] [PubMed] [Google Scholar]
  • Ikeda U., Matsui K., Murakami Y., Shimada K., Monocyte chemoattractant protein-1 and coronary artery disease. Clin Cardiol, 2002, 25, 143–147. [CrossRef] [PubMed] [Google Scholar]
  • Kaul S., Bandaru V.C., Suvarna A., Boddu D.B., Stroke burden and risk factors in developing countries with special reference to India. J Indian Med Assoc, 2009, 107, 358, 367–370. [Google Scholar]
  • Koch A.E., Kunkel S.L., Pearce W.H., Shah M.R., Parikh D., Evanoff H.L., Haines G.K., Burdick M.D., Strieter R.M., Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am J Pathol, 1993, 142, 1423–1431. [PubMed] [Google Scholar]
  • Kuziel W.A., Dawson T.C., Quinones M., Garavito E., Chenaux G., Ahuja S.S., Reddick R.L., Maeda N., CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis, 2003, 167, 25–32. [CrossRef] [PubMed] [Google Scholar]
  • Leal J., Luengo-Fernandez R., Gray A., Petersen S., Rayner M., Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart J, 2006, 27, 1610–1619. [CrossRef] [PubMed] [Google Scholar]
  • Lesnik P., Haskell C.A., Charo I.F., Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest, 2003, 111, 333–340. [CrossRef] [PubMed] [Google Scholar]
  • Liao F., Berliner J.A., Mehrabian M., Navab M., Demer L.L., Lusis A.J., Fogelman A.M., Minimally modified low density lipoprotein is biologically active in vivo in mice. J Clin Invest, 1991, 87, 2253–2257. [CrossRef] [PubMed] [Google Scholar]
  • Libby P., The forgotten majority : unfinished business in cardiovascular risk reduction. J Am Coll Cardiol, 2005, 46, 1225–1228. [CrossRef] [PubMed] [Google Scholar]
  • Ludwig A., Berkhout T., Moores K., Groot P., Chapman G., Fractalkine is expressed by smooth muscle cells in response to IFN-gamma and TNF-alpha and is modulated by metalloproteinase activity. J Immunol, 2002, 168, 604–612. [PubMed] [Google Scholar]
  • Ludwig A., Weber C., Transmembrane chemokines : versatile “special agents” in vascular inflammation. Thromb Haemost, 2007, 97, 694–703. [PubMed] [Google Scholar]
  • McDermott D.H., Fong A.M., Yang Q., Sechler J.M., Cupples L.A., Merrell M.N., Wilson P.W., D’Agostino, R.B., O’Donnell, C.J., Patel, D.D., Murphy, P.M., Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest, 2003, 111, 1241–1250. [PubMed] [Google Scholar]
  • McDermott D.H., Halcox J.P., Schenke W.H., Waclawiw M.A., Merrell M.N., Epstein N., Quyyumi A.A., Murphy P.M., Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res, 2001, 89, 401–407. [CrossRef] [PubMed] [Google Scholar]
  • Moatti D., Faure S., Fumeron F., Amara M., Seknadji P., McDermott D.H., Debré P., Aumont M.C., Murphy P.M., de Prost D., Combadière C., Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood, 2001, 97, 1925–1928. [CrossRef] [PubMed] [Google Scholar]
  • Moreau M., Brocheriou I., Petit L., Ninio E., Chapman M.J., Rouis M., Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages : relevance to stability of atherosclerotic plaque. Circulation, 1999, 99, 420–426. [PubMed] [Google Scholar]
  • Niessner A., Marculescu R., Haschemi A., Endler G., Zorn G., Weyand C.M., Maurer G., Mannhalter C., Wojta J., Wagner O., Huber K., Opposite effects of CX3CR1 receptor polymorphisms V249I and T280M on the development of acute coronary syndrome. A possible implication of fractalkine in inflammatory activation. Thromb Haemost, 2005, 93, 949–954. [PubMed] [Google Scholar]
  • Nockher W.A., Scherberich J.E., Expanded CD14+ CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect Immun, 1998, 66, 2782–2790. [PubMed] [Google Scholar]
  • Nozawa N., Hibi K., Endo M., Sugano T., Ebina T., Kosuge M., Tsukahara K., Okuda J., Umemura S., Kimura K., Association between circulating monocytes and coronary plaque progression in patients with acute myocardial infarction. Circ J, 2010, 74, 1384–1391. [CrossRef] [PubMed] [Google Scholar]
  • Ortlepp J.R., Vesper K., Mevissen V., Schmitz F., Janssens U., Franke A., Hanrath P., Weber C., Zerres K., Hoffmann R., Chemokine receptor (CCR2) genotype is associated with myocardial infarction and heart failure in patients under 65 years of age. J Mol Med, 2003, 81, 363–367. [PubMed] [Google Scholar]
  • Panzer U., Schneider A., Wilken J., Thompson D.A., Kent S.B., Stahl R.A., The chemokine receptor antagonist AOP-RANTES reduces monocyte infiltration in experimental glomerulonephritis. Kidney Int, 1999, 56, 2107–2115. [CrossRef] [PubMed] [Google Scholar]
  • Passlick B., Flieger D., Ziegler-Heitbrock H.W., Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 1989, 74, 2527–2534. [PubMed] [Google Scholar]
  • Petrkova J., Cermakova Z., Drabek J., Lukl J., Petrek M., CC chemokine receptor (CCR)2 polymorphism in Czech patients with myocardial infarction. Immunol Lett, 2003, 88, 53–55. [CrossRef] [PubMed] [Google Scholar]
  • Petrkova J., Cermakova Z., Lukl J., Petrek M., CC chemokine receptor 5 (CCR5) deletion polymorphism does not protect Czech males against early myocardial infarction. J Intern Med, 2005, 257, 564–566. [CrossRef] [PubMed] [Google Scholar]
  • Potteaux S., Combadière C., Esposito B., Casanova S., Merval R., Ardouin P., Gao J.L., Murphy P.M., Tedgui A., Mallat Z., Chemokine receptor CCR1 disruption in bone marrow cells enhances atherosclerotic lesion development and inflammation i n mice. Mol Med, 2005, 11, 16–20. [PubMed] [Google Scholar]
  • Potteaux S., Combadière C., Esposito B., Lecureuil C., Ait-Oufella H., Merval R., Ardouin P., Tedgui A., Mallat Z., Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol, 2006, 26, 1858–1863. [CrossRef] [PubMed] [Google Scholar]
  • Proudfoot A.E., Buser R., Borlat F., Alouani S., Soler D., Offord R.E., Schroder J.M., Power C.A., Wells T.N., Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J Biol Chem, 1999, 274, 32478–32485. [CrossRef] [PubMed] [Google Scholar]
  • Proudfoot A.E., Power C.A., Hoogewerf A.J., Montjovent M.O., Borlat F., Offord R.E., Wells T.N., Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem, 1996, 271, 2599–2603. [CrossRef] [PubMed] [Google Scholar]
  • Qiao J.H., Tripathi J., Mishra N.K., Cai Y., Tripathi S., Wang X.P., Imes S., Fishbein M.C., Clinton S.K., Libby P., Lusis A.J., Rajavashisth T.B., Role of macrophage colony-stimulating factor in atherosclerosis : studies of osteopetrotic mice. Am J Pathol, 1997, 150, 1687–1699. [PubMed] [Google Scholar]
  • Quinones M.P., Martinez H.G., Jimenez F., Estrada C.A., Dudley M., Willmon O., Kulkarni H., Reddick R.L., Fernandes G., Kuziel W.A., Ahuja S.K., Ahuja S.S., CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis, 2007, 195, e92–103. [CrossRef] [PubMed] [Google Scholar]
  • Rollins B.J., Monocyte chemoattractant protein 1 : a potential regulator of monocyte recruitment in inflammatory disease. Mol Med Today, 1996, 2, 198–204. [CrossRef] [PubMed] [Google Scholar]
  • Ross R., Atherosclerosis-an inflammatory disease. N Engl J Med, 1999, 340, 115–126. [Google Scholar]
  • Saederup N., Chan L., Lira S.A., Charo I.F., Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2−/− mice : evidence for independent chemokine functions in atherogenesis. Circulation, 2008, 117, 1642–1648. [CrossRef] [PubMed] [Google Scholar]
  • Schecter A.D., Rollins B.J., Zhang Y.J., Charo I.F., Fallon J.T., Rossikhina M., Giesen P.L., Nemerson Y., Taubman M.B., Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J Biol Chem, 1997, 272, 28568–28573. [CrossRef] [PubMed] [Google Scholar]
  • Serbina N.V., Pamer E.G., Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol, 2006, 7, 311–317. [CrossRef] [PubMed] [Google Scholar]
  • Sheikine Y., Bang C.S., Nilsson L., Samnegard A., Hamsten A., Jonasson L., Eriksson P., Sirsjo A., Decreased plasma CXCL16/SR-PSOX concentration is associated with coronary artery disease. Atherosclerosis, 2006, 188, 462–466. [CrossRef] [PubMed] [Google Scholar]
  • Simeoni E., Winkelmann B.R., Hoffmann M.M., Fleury S., Ruiz J., Kappenberger L., Marz W., Vassalli G., Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J, 2004, 25, 1438–1446. [CrossRef] [PubMed] [Google Scholar]
  • Simmons G., Clapham P.R., Picard L., Offord R.E., Rosenkilde M.M., Schwartz T.W., Buser R., Wells T.N., Proudfoot A.E., Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science, 1997, 276, 276–279. [CrossRef] [PubMed] [Google Scholar]
  • Skrzeczynska J., Kobylarz K., Hartwich Z., Zembala M., Pryjma J., CD14+CD16+ monocytes in the course of sepsis in neonates and small children : monitoring and functional studies. Scand J Immunol, 2002, 55, 629–638. [CrossRef] [PubMed] [Google Scholar]
  • Stoneman V., Braganza D., Figg N., Mercer J., Lang R., Goddard M., Bennett M., Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res, 2007, 100, 884–893. [CrossRef] [PubMed] [Google Scholar]
  • Sunderkotter C., Nikolic T., Dillon M.J., Van Rooijen N., Stehling M., Drevets D.A., Leenen P.J., Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol, 2004, 172, 4410–4417. [PubMed] [Google Scholar]
  • Swirski F.K., Libby P., Aikawa E., Alcaide P., Luscinskas F.W., Weissleder R., Pittet M.J., Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest, 2007, 117, 195–205. [CrossRef] [PubMed] [Google Scholar]
  • Szalai C., Duba J., Prohaszka Z., Kalina A., Szabo T., Nagy B., Horvath L., Csaszar A., Involvement of polymorphisms in the chemokine system in the susceptibility for coronary artery disease (CAD). Coincidence of elevated Lp(a) and MCP-1-2518 G/G genotype in CAD patients. Atherosclerosis, 2001, 158, 233–239. [CrossRef] [PubMed] [Google Scholar]
  • Tacke F., Alvarez D., Kaplan T.J., Jakubzick C., Spanbroek R., Llodra J., Garin A., Liu J., Mack M., van Rooijen N., Lira S.A., Habenicht A.J., Randolph G.J., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest, 2007, 117, 185–194. [CrossRef] [PubMed] [Google Scholar]
  • Teupser D., Pavlides S., Tan M., Gutierrez-Ramos J.C., Kolbeck R., Breslow, J.L. Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci USA, 2004, 101, 17795–17800. [CrossRef] [Google Scholar]
  • Umehara H., Goda S., Imai T., Nagano Y., Minami Y., Tanaka Y., Okazaki T., Bloom E.T., Domae N., Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol, 2001, 79, 298–302. [CrossRef] [PubMed] [Google Scholar]
  • Valente A.J., Rozek M.M., Sprague E.A., Schwartz C.J., Mechanisms in intimal monocyte-macrophage recruitment. A special role for monocyte chemotactic protein-1. Circulation, 1992, 86, III20–25. [Google Scholar]
  • Veillard N.R., Kwak B., Pelli G., Mulhaupt F., James R.W., Proudfoot A.E., Mach F., Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res, 2004, 94, 253–261. [CrossRef] [PubMed] [Google Scholar]
  • Wang J.M., Sica A., Peri G., Walter S., Padura I.M., Libby P., Ceska M., Lindley I., Colotta F., Mantovani A., Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human vascular smooth muscle cells. Arterioscler Thromb, 1991, 11, 1166–1174. [PubMed] [Google Scholar]
  • Weber C., Belge K.U., von Hundelshausen P., Draude G., Steppich B., Mack M., Frankenberger M., Weber K.S., Ziegler-Heitbrock H.W., Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol, 2000, 67, 699–704. [PubMed] [Google Scholar]
  • Wuttge D.M., Zhou X., Sheikine Y., Wagsater D., Stemme V., Hedin U., Stemme S., Hansson G.K., Sirsjo A., CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol, 2004, 24, 750–755. [CrossRef] [PubMed] [Google Scholar]
  • Yla-Herttuala S., Lipton B.A., Rosenfeld M.E., Sarkioja T., Yoshimura T., Leonard E.J., Witztum J.L., Steinberg D., Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA, 1991, 88, 5252–5256. [CrossRef] [Google Scholar]
  • Yu X., Dluz S., Graves D.T., Zhang L., Antoniades H.N., Hollander W., Prusty S., Valente A.J., Schwartz C.J., Sonenshein G.E., Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acad Sci USA, 1992, 89, 6953–6957. [CrossRef] [Google Scholar]
  • Zernecke A., Bot I., Djalali-Talab Y., Shagdarsuren E., Bidzhekov K., Meiler S., Krohn R., Schober A., Sperandio M., Soehnlein O., Bornemann J., Tacke F., Biessen E.A., Weber C., Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res, 2008, 102, 209–217. [CrossRef] [PubMed] [Google Scholar]
  • Zernecke A., Shagdarsuren E., Weber C., Chemokines in atherosclerosis : an update. Arterioscler Thromb Vasc Biol, 2008, 28, 1897–1908. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.