Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 204, Numéro 4, 2010
Page(s) 273 - 284
Section Les chimiokines : de nouveaux messagers communs entre système nerveux et système immunitaire
DOI https://doi.org/10.1051/jbio/2010022
Publié en ligne 10 janvier 2011
  • Balabanian K., Lagane B., Infantino S., Chow K.Y., Harriague J., Moepps B., Arenzana-Seisdedos F., Thelen M., Bachelerie F., The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem, 2005a, 280, 35760–35766. [CrossRef] [PubMed] [Google Scholar]
  • Balabanian K., Lagane B., Pablos J.L., Laurent L., Planchenault T., Verola O., Lebbe C., Kerob D., Dupuy A., Hermine O., Nicolas J.F., Latger-Cannard V., Bensoussan D., Bordigoni P., Baleux F., Le Deist, F., Virelizier, J.L., Arenzana-Seisdedos, F., Bachelerie, F., WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood, 2005b, 105, 2449–2457. [CrossRef] [PubMed] [Google Scholar]
  • Balabanian K., Levoye A., Klemm L., Lagane B., Hermine O., Harriague J., Baleux F., Arenzana-Seisdedos F., Bachelerie F., Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest, 2008, 118, 1074–1084. [PubMed] [Google Scholar]
  • Balkwill F., The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol, 2004, 14, 171–179. [CrossRef] [PubMed] [Google Scholar]
  • Busillo J.M., Benovic J.L., Regulation of CXCR4 signaling. Biochim Biophys Acta, 2007, 1768, 952–963. [CrossRef] [PubMed] [Google Scholar]
  • Busillo J.M., Armando S., Sengupta R., Meucci O., Bouvier M., Benovic J.L., Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem, 2010, 285, 7805–7817. [CrossRef] [PubMed] [Google Scholar]
  • Feng Y., Broder C.C., Kennedy P.E., Berger E.A., HIV-1 entry cofactor : functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272, 872–877. [CrossRef] [PubMed] [Google Scholar]
  • Gross N., Meier R., Chemokines in neuroectodermal cancers : the crucial growth signal from the soil. Semin Cancer Biol, 2009, 19, 103–110. [CrossRef] [PubMed] [Google Scholar]
  • Guimond M., Veenstra R.G., Grindler D.J., Zhang H., Cui Y., Murphy R.D., Kim S.Y., Na R., Hennighausen L., Kurtulus S., Erman B., Matzinger P., Merchant M.S., Mackall C.L., Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol, 2009, 10, 149–157. [CrossRef] [PubMed] [Google Scholar]
  • Gulino A.V., Moratto D., Sozzani S., Cavadini P., Otero K., Tassone L., Imberti L., Pirovano S., Notarangelo L.D., Soresina R., Mazzolari E., Nelson D.L., Notarangelo L.D., Badolato R., Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood, 2004, 104, 444–452. [CrossRef] [PubMed] [Google Scholar]
  • Hernandez P.A., Gorlin R.J., Lukens J.N., Taniuchi S., Bohinjec J., Francois F., Klotman M.E., Diaz G.A., Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet, 2003, 34, 70–74. [CrossRef] [PubMed] [Google Scholar]
  • Isgro A., Sirianni M.C., Gramiccioni C., Mezzaroma I., Fantauzzi A., Aiuti F., Idiopathic CD4+ lymphocytopenia may be due to decreased bone marrow clonogenic capability. Int Arch Allergy Immunol, 2005, 136, 379–384. [CrossRef] [PubMed] [Google Scholar]
  • Kawai T., Malech H.L., WHIM syndrome : congenital immune deficiency disease. Curr Opin Hematol, 2009, 16, 20–26. [CrossRef] [PubMed] [Google Scholar]
  • Kryczek I., Wei S., Keller E., Liu R., Zou W., Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol, 2007, 292, C987–995. [CrossRef] [PubMed] [Google Scholar]
  • Lagane B., Chow K.Y., Balabanian K., Levoye A., Harriague J., Planchenault T., Baleux F., Gunera-Saad N., Arenzana-Seisdedos F., Bachelerie F., CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood, 2008, 112, 34–44. [CrossRef] [PubMed] [Google Scholar]
  • Lataillade J.J., Domenech J., Le Bousse-Kerdiles, M.C., Stromal cell-derived factor-1 (SDF-1) \ CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds : survival, cell cycling and trafficking. Eur Cytokine Netw, 2004, 15, 177–188. [PubMed] [Google Scholar]
  • Laurence J., Mitra D., Steiner M., Lynch D.H., Siegal F.P., Staiano-Coico L., Apoptotic depletion of CD4+ T cells in idiopathic CD4+ T lymphocytopenia. J Clin Invest, 1996, 97, 672–680. [CrossRef] [PubMed] [Google Scholar]
  • Ma Q., Jones D., Borghesani P.R., Segal R.A., Nagasawa T., Kishimoto T., Bronson R.T., Springer T.A., Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA, 1998, 95, 9448–9453. [CrossRef] [Google Scholar]
  • Mackay C.R., Moving targets : cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol, 2008, 9, 988–998. [CrossRef] [PubMed] [Google Scholar]
  • Malaspina A., Moir S., Chaitt D.G., Rehm C.A., Kottilil S., Falloon J., Fauci A.S., Idiopathic CD4+ T lymphocytopenia is associated with increases in immature/transitional B cells and serum levels of IL-7. Blood, 2007, 109, 2086–2088. [CrossRef] [PubMed] [Google Scholar]
  • Mc Guire P.J., Cunningham-Rundles C., Ochs H., Diaz G.A., Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol, 2010, 135, 412–421. [CrossRef] [PubMed] [Google Scholar]
  • McCormick P.J., Segarra M., Gasperini P., Gulino A.V., Tosato G., Impaired recruitment of Grk6 and beta-Arrestin 2 causes delayed internalization and desensitization of a WHIM syndrome-associated CXCR4 mutant receptor. PLoS One, 2009, 4, e8102. [Google Scholar]
  • Moore C.A., Milano S.K., Benovic J.L., Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol, 2007, 69, 451–482. [CrossRef] [PubMed] [Google Scholar]
  • Nagasawa T., Tachibana K., Kishimoto T., A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4 : their functions in development, hematopoiesis and HIV infection. Semin Immunol, 1998, 10, 179-185. [CrossRef] [PubMed] [Google Scholar]
  • Netea M.G., Brouwer A.E., Hoogendoorn E.H., Van der Meer, J.W., Koolen, M., Verweij, P.E., Kullberg, B.J., Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia : defective cytokine production and reversal by recombinant interferon-gamma therapy. Clin Infect Dis, 2004, 39, e83–87. [CrossRef] [PubMed] [Google Scholar]
  • Notarangelo L.D., Badolato R., Leukocyte trafficking in primary immunodeficiencies. J Leukoc Biol, 2009, 85, 335–343. [CrossRef] [PubMed] [Google Scholar]
  • Onai N., Zhang Y., Yoneyama H., Kitamura T., Ishikawa S., Matsushima K., Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood, 2000, 96, 2074–2080. [PubMed] [Google Scholar]
  • Patrussi L., Baldari C.T., Intracellular mediators of CXCR4-dependent signaling in T cells. Immunol Lett, 2008, 115, 75–82. [CrossRef] [PubMed] [Google Scholar]
  • Premont R.T., Gainetdinov R.R., Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol, 2007, 69, 511–534. [CrossRef] [PubMed] [Google Scholar]
  • Proudfoot A.E., Chemokine receptors : multifaceted therapeutic targets. Nat Rev Immunol, 2002, 2, 106–115. [CrossRef] [PubMed] [Google Scholar]
  • Pusic I., Dipersio J.F., Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol, 2010, 17, 319–326. [CrossRef] [PubMed] [Google Scholar]
  • Ratajczak M.Z., Zuba-Surma E., Kucia M., Reca R., Wojakowski W., Ratajczak J., The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 2006, 20, 1915–1924. [CrossRef] [PubMed] [Google Scholar]
  • Raz E., Guidance of primordial germ cell migration. Curr Opin Cell Biol, 2004, 16, 169–173. [CrossRef] [PubMed] [Google Scholar]
  • Roger P.M., Bernard-Pomier G., Counillon E., Breittmayer J.P., Bernard A., Dellamonica P., Overexpression of Fas/CD95 and Fas-induced apoptosis in a patient with idiopathic CD4+ T lymphocytopenia. Clin Infect Dis, 1999, 28, 1012–1016. [CrossRef] [PubMed] [Google Scholar]
  • Rubin J.B., Chemokine signaling in cancer : one hump or two ? Semin Cancer Biol, 2009, 19, 116-122. [CrossRef] [PubMed] [Google Scholar]
  • Sawada S., Gowrishankar K., Kitamura R., Suzuki M., Suzuki G., Tahara S., Koito A., Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors. J Exp Med, 1998, 187, 1439–1449. [CrossRef] [PubMed] [Google Scholar]
  • Scott-Algara D., Balabanian K., Chakrabarti L.A., Mouthon L., Dromer F., Didier C., Arenzana-Seisdedos F., Lortholary O., Idiopathic CD4+ T-cell lymphocytopenia is associated with impaired membrane expression of the chemokine receptor CXCR4. Blood, 2010, 115, 3708–3717. [CrossRef] [PubMed] [Google Scholar]
  • Seligmann M., Aractingi S., Oksenhendler E., Rabian C., Ferchal F., Gonnot G., CD4+ lymphocytopenia without HIV in patient with cryptococcal disease. Lancet, 1991, 337, 57–58. [CrossRef] [Google Scholar]
  • Seligmann M., Autran B., Rabian C., Ferchal F., Olive D., Echard M., Oksenhendler E., Profound and possibly primary “idiopathic CD4+ T lymphocytopenia” in a patient with fungal infections. Clin Immunol Immunopathol, 1994, 71, 203–207. [CrossRef] [PubMed] [Google Scholar]
  • Siedlar M., Rudzki Z., Strach M., Trzyna E., Pituch-Noworolska A., Blaut-Szlosarczyk A., Bukowska-Strakova K., Lenart M., Grodzicki T., Zembala M., Familial occurrence of warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome. Arch Immunol Ther Exp (Warsz), 2008, 56, 419–425. [CrossRef] [PubMed] [Google Scholar]
  • Smith D.K., Neal J.J., Holmberg S.D., Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States. The Centers for Disease Control Idiopathic CD4+ T-lymphocytopenia Task Force. N Engl J Med, 1993, 328, 373–379. [CrossRef] [PubMed] [Google Scholar]
  • Spira T.J., Jones B.M., Nicholson J.K., Lal R.B., Rowe T., Mawle A.C., Lauter C.B., Shulman J.A., Monson R.A., Idiopathic CD4+ T-lymphocytopenia-an analysis of five patients with unexplained opportunistic infections. N Engl J Med, 1993, 328, 386–392. [CrossRef] [PubMed] [Google Scholar]
  • Takahama Y., Journey through the thymus : stromal guides for T-cell development and selection. Nat Rev Immunol, 2006, 6, 127–135. [CrossRef] [PubMed] [Google Scholar]
  • Takaya J., Fujii Y., Higashino H., Taniuchi S., Nakamura M., Kaneko K., A case of WHIM syndrome associated with diabetes and hypothyroidism. Pediatr Diabetes, 2009, 10, 484–486. [CrossRef] [PubMed] [Google Scholar]
  • Tassone L., Notarangelo L.D., Bonomi V., Savoldi G., Sensi A., Soresina A., Smith C.I., Porta F., Plebani A., Notarangelo L.D., Badolato R., Clinical and genetic diagnosis of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome in 10 patients. J Allergy Clin Immunol, 2009, 123, 1170–1173. [CrossRef] [PubMed] [Google Scholar]
  • Trojan T., Collins R., Khan D.A., Safety and efficacy of treatment using interleukin-2 in a patient with idiopathic CD4(+) lymphopenia and Mycobacterium avium-intracellulare. Clin Exp Immunol, 2009, 156, 440–445. [CrossRef] [PubMed] [Google Scholar]
  • Tsutsumi H., Tanaka T., Ohashi N., Masuno H., Tamamura H., Hiramatsu K., Araki T., Ueda S., Oishi S., Fujii N., Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents. Biopolymers, 2007, 88, 279–289. [CrossRef] [PubMed] [Google Scholar]
  • Walker U.A., Warnatz K., Idiopathic CD4 lymphocytopenia. Curr Opin Rheumatol, 2006, 18, 389–395. [CrossRef] [PubMed] [Google Scholar]
  • Warnatz K., Draeger R., Schlesier M., Peter H.H., Successful IL-2 therapy for relapsing herpes zoster infection in a patient with idiopathic CD4+ T lymphocytopenia. Immunobiology, 2000, 202, 204–211. [PubMed] [Google Scholar]
  • Yu D., Rao S., Tsai L.M., Lee S.K., He Y., Sutcliffe E.L., Srivastava M., Linterman M., Zheng L., Simpson N., Ellyard J.I., Parish I.A., Ma C.S., Li Q.J., Parish C.R., Mackay C.R., Vinuesa C.G., The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity, 2009, 31, 457–468. [CrossRef] [PubMed] [Google Scholar]
  • Zonios D.I., Falloon J., Bennett J.E., Shaw P.A., Chaitt D., Baseler M.W., Adelsberger J.W., Metcalf J.A., Polis M.A., Kovacs S.J., Kovacs J.A., Davey R.T., Lane H.C., Masur H., Sereti I., Idiopathic CD4+ lymphocytopenia : natural history and prognostic factors. Blood, 2008, 112, 287–294. [CrossRef] [PubMed] [Google Scholar]
  • Zuelzer W.W., “Myelokathexis”-a New Form of Chronic Granulocytopenia. Report of a Case. N Engl J Med, 1964, 270, 699–704. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.